[1] LI KER-CHAU.Sliced Inverse Regression for Dimension Reduction[J].Journal of the American Statistical Association,1991,86(414):316-327.
[2] COOK R DENNIS,LI Bing.Dimension Reduction for Conditional Mean in Regression[J].Annals of Statistics,2002,30(2):455-474.
[3] LI KER-CHAU.On Principal Hessian Directions for Data Visualization and Dimension Reduction:Another Application of Stein's Lemma[J].Journal of the American Statistical Association,1992,87(420):1 025-1 039.
[4] BRILLINGER DAVID R.Sliced Inverse Regression for Dimension Reduction:Comment [J].Journal of the American Statistical Association,1991,86(414):328-332.
[5] LI Bing,WANG Shaoli.On Directional Regression for Dimension Reduction[J].Journal of the American Statistical Association,2009,102(479):997-1 008.
[6] COOK R DENNIS.Regression Graphics:Ideas for Studying Regressions Through Graphics[M].New York:Wiley,1998:103-105.
[7] ZHU Liping,ZHU Lixing,FENG Zhenghui.H.Dimension Reduction in Regressions Through Cumulative Slicing Estimation[J].Journal of the American Statistical Association,2010,105(492):1 455-1 466.
[8] 甘胜进,游文杰.基于矩生成函数的多元响应降维子空间估计[J].东北师大学报(自然科学版),2017,49(1):43-47.
[9] 甘胜进,涂开仁,游文杰.一类多元响应降维子空间的估计及其应用[J].统计与信息论坛,2017,32(10):18-23.
[10] FENG Zhenghui,WEN XUERONG MEGGIE,YU Zhou,et al.On Partial Sufficient Dimension Reduction with Applications to Partially Linear Multi-Index Models[J].Journal of the American Statistical Association 2013,108(501):237-246.
[11] LI Bing,ZHA Hongyuan,CHIAROMONTE FRANCESCA.Contour Regression:A General Approach to Dimension Reduction[J].Annals of Statistics,2005,33(4):1 580-1 616. |