[1] FANG Kaitai,WANG Yuan.Number-Theoretic Methods in Statistics[M].London:Chapman and Hall,1994:200-246.
[2] ZHOU Yongdao,NING Jianhui,SONG Xiebing.Lee Discrepancy and Its Applications in Experimental Designs[J].Statistics and Probability Letters,2008,78(13):1 933-1 942.
[3] HICKERNELL FRED J.A Generalized Discrepancy and Quadrature Error Bound[J].Mathematics of Computation,1998,67(221):299-322.
[4] CHATTERJEE K,FANG K T,QIN Hong.Uniformity in Factiorial Designs with Mixed Levels[J].Journal of Statistical Planning and Inference,2005,128(2):593-607.
[5] CHATTERJEE KASHINATH,LI Zhaohai,QIN Hong.Some New Lower Bounds to Centered and Wrap-Round L2-Discrepancies[J].Statistics and Probability Letters,2012,82(7):1 367-1 373.
[6] XU Hongquan,WU C F J.Generalized Minimum Aberration for Asymmetrical Fractional Factorial Designs[J].The Annals of Statistics,2001,29(2):549-560.
[7] ZOU Na,REN Ping,QIN Hong.A Note on Lee Discrepancy[J].Statistics and Probability Letters,2009,79(4):496-500.
[8] XU Hongquan.Minimum Moment Aberration for Nonregular Designs and Supersaturated Designs[J].Statistica Sinca,2003,13(3):691-708.
[9] CHATTERJEE KASHINATH,QIN Hong,ZOU Na.Lee Discrepancy on Asymmetrical Factorials with Two-and Three-Levels[J].Science China Mathematics,2012,55(3):663-670.
[10] 张琼慧.二三混水平因子设计的Lee-偏差和可卷型L2-偏差的新下界[D].武汉:华中师范大学,2013:9-10.
[11] 雷秩菊.2和4混水平U-型设计在可卷L2-偏差下的下界[J].北京教育学院学报(自然科学版),2016,11(1):1-4.
[12] FANG Kaitai,TANG Yu,YIN Jianxing.Lower Bounds for Wrap-Around L2-Discrepancy and Constructions of Symmetrical Uniform Designs[J].Journal of Complexity,2005,21(5):757-771. |