[1] ZHOU J-S.An SIS Disease Transmission Model with Recruitment-Birth-Death Demographics[J].Mathematical and Computer Modelling,1995,21(11):1-11.
[2] 刘志华,曹慧,徐河苗.具有时滞效应的SIS模型的动力学分析[J].西南师范大学学报(自然科学版),2022,47(9):37-47.
[3] WEI Junjie,ZOU Xingfu.Bifurcation Analysis of a Population Model and the Resulting SIS Epidemic Model with Delay[J].Journal of Computational and Applied Mathematics,2005,197(1):169-187.
[4] 孙威,丁宇婷.一类具时滞的传染病模型的建模及动力学性质分析:以新型冠状病毒感染为例[J].沈阳大学学报(自然科学版),2023,35(1):74-84.
[5] YUAN Sanling,MA Zhien.Global Stability and Hopf Bifurcation of an SIS Epidemic Model with Time Delays[J].Journal of Systems Science and Complexity,2001(3):327-336.
[6] XIAO Dongmei,RUAN Shigui.Global Analysis of an Epidemic Model with Nonmonotone Incidence Rate [J].Mathematical Bilsciences,2007,208(2):419-429.
[7] XIE Jingli,GUO Hongli,ZHANG Meiyang.Dynamics of an SEIR Model with Media Coverage Mediated Nonlinear Infectious Force[J].Mathematical Biosciences and Engineering:MBE,2023,20(8):14616-14633.
[8] 赵仕杰,李大普.一类具有种群Logistic增长及非线性发生率的时滞SIS传染病模型的稳定性与Hopf分支[J].广西科学院学报,2011,27(1):6-9;16.
[9] XU Rui,ZHANG Shihua,ZHANG Fengqin.Global Dynamics of a Delayed SEIS Infectious Disease Model with Logistic Growth and Saturation Incidence[J].Mathematical Methods in the Applied Sciences,2016,39(12):3294-3308.
[10] 聂勇冰,侯强.具有logistic增长的SIS传染病模型动力学分析[J].中北大学学报(自然科学版),2022,43(4):307-312.
[11] VAN DEN DRIESSCHE P,WATMOUGH J.Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission[J].Mathematical Biosciences,2002,180(1/2):29-48.
[12]卜春霞,程桂芳.非线性系统的广义不变原理[J].郑州大学学报(理学版),2004,36(2):25-26;33.
[13] 魏俊杰,王洪滨,蒋卫华.时滞微分方程的分支理论及应用[M].北京:科学出版社,2012:23-34.
|