[1] CEN Zhongdi,HUANG Jian,XU Aimin.An Efficient Numerical Method for a Two-Point Boundary Value Problem with a Caputo Fractional Derivative[J].Journal of Computational and Applied Mathematics,2018,336:1-7.
[2] WARISSARA SAENGTHONG,EKKARATH THAILERT,SOTIRIS K NTOUYAS.Existence and Uniqueness of Solutions for System of Hilfer-Hadamard Sequential Fractional Differential Equations with Two Point Boundary Conditions[J].Advances in Difference Equations,2019,2019:1-16.
[3] SU Teng,ZHOU Hongwei,ZHAO Jiawei,et al.Fractional Derivative Modeling of Time-Varying Viscosity Materials Considering Initial Loading Ramp in Real Experiments[J].Mathematics and Mechanics of Solids,2021,26:1599-1613.
[4] ZHENG Xiangcheng,ERVIN V J,WANG Hong.Wellposedness of the Two-Sided Variable Coefficient Caputo Flux Fractional Diffusion Equation and Error Estimate of Its Spectral Approximation[J].Applied Numerical Mathematics,2020,153:234-247.
[5] REDHWAN SALEH S,SHAIKH SADIKALI,ABDO MOHAMMED S.Implicit Fractional Differential Equation with Anti-Periodic Boundary Condition Involving Caputo-Katugampola Type[J].AIMS Mathematics,2020,5(4):3714-3730.
[6] GUO Limin,LI Cheng,ZHAO Jingbo.Existence of Monotone Positive Solutions for Caputo-Hadamard Nonlinear Fractional Differential Equation with Infinite-Point Boundary Value Conditions[J].Symmetry,2023,15(5):970.DOI:10.3390/sym15050970.
[7] 薛益民,苏莹,苏有慧.一类非线性Caputo型分数阶微分方程耦合系统的正解[J].吉林大学学报(理学版),2017,55(4):853-860.
[8] DAI Qun,ZHANG Yunying.Stability of Nonlinear Implicit Differential Equations with Caputo-Katugampola Fractional Derivative[J].Mathematics,2023,11(14):3082.DOI:10.3390/math11143082.
[9] MALI ASHWINI D,KUCCHE KISHOR D,SOUSA JOS VANTERLER DA COSTA.On Coupled System of Nonlinear ψ-Hilfer Hybrid Fractional Differential Equations[J].International Journal of Nonlinear Sciences and Numerical Simulation,2023,24(4):1425-1445.
[10] BAI Zhanbing,DONG Xiaoyu,YIN Chun.Existence Results for Impulsive Nonlinear Fractional Differential Equation with Mixed Boundary Conditions[J].Boundary Value Problems,2016,2016(1):63-73.
|