[1] LAKSHMIKANTHAM V,SHAHZAD N,NIETO J J.Methods of Generalized Quasilinearization for Geriodic Boundary Value Groblems [J].Nonlinear Anal.,1996,27:143-151.[2] NIETO J J,ALVAREZ-NORIEGA N.Periodic Boundary Problems for Nonlinear First Order Ordinary Differential Equations [J].Acta. Math. Hunfar,1996,71:49-58.[3] YIN Y.Monotone Iterative Technique and Quasilinearization for Some Anti-Periodic Problems [J].Nonlinear World,1996,3:253-266.[4] CHEN Y Q.On Massera′s Theorem for Anti-Periodic Solution [J].A′dv. Math. Sci. Appl.,1999,9:125-128.[5] FRANCO D,NIETO J J,O′REGAN D.Anti-Periodic Boundary Value Problem for Nonlinear First Order Ordinary Differential Equations [J].Math. Inequal. Appl.,2003,6:477-485.[6] LADDE G S,LAKSHMIKANTHAM V,VATSALA A S.Monotone Iterative Techniques for Nonlinear Differential Equations [M].Pitman,London,1985.[7] ZUO W,JIANG D,O′REGAN D,et al.Optimal Existence Conditions for the Periodic Delay j-Laplace Equation with Upper and Lower Solutions in the Reverse Order [J].Results Math.,2003,44:375-385.[8] HE Z,HE X.Monotone Iterative Technique for Impulsive Integro-Differential Equations with Periodic Boundary Conditions [J].Comput. Math. Appl.,2004,48:73-84.[9] RACHUNKOVA I,TVRDY M.Non-Order Lower and Upper Function in Second Order Impulsive Periodic Problems [J].Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.,2005,12:397-415. |