journal6 ›› 2000, Vol. 21 ›› Issue (3): 27-32.

• Mathematics • Previous Articles     Next Articles

The Number of Solutions for a Class of Exponential Diophantine Equations

  

  1. ( Department of Mathematics, Zhanjiang Normal College, Zhanjiang 524048, Guangdong China)
  • Online:2000-09-15 Published:2013-01-16

Abstract: Let a, b, c, k be posi tive integers such taht a+ b= ck , gcd( a, b ) = 1, ∈ { 1, 2, 4} , k> 1 and k is odd if c= 1 or 2. Further let  ε= ( a+ - b ) / c and  ε= ( a- - b ) / c. In this paper we prove that if ( a, b , c,k )≠( 1, 7, 4, 2 ) or ( 3, 5, 4, 2 ) , then there exist at mos t one positive odd integer n satisfying( ε n- ε n) / ( ε- ε) = 1 with n> 1.Moreover , such n must be an odd prime satisfying n< 1+ ( 2log π) / log k+ 2563. 43( 1+ 21. 96π/ log k) .

Key words: exponential diopnantine equation, number of solutions, upper bound

WeChat e-book chaoxing Mobile QQ