[1] ZAYERNOURI MOHSEN, AINSWORTH MARK, KARNIADAKIS GEORGE EM. Tempered Fractional Sturm-Liouville Eigen-Problems [J]. SIAM Journal on Scientific Computing, 2015, 37(4): 1777-1800.
[2] LI Can, DENG Weihua, ZHAO Lijing. Well-Posedness and Numerical Algorithm for the Tempered Fractional Ordinary Differential Equations[J]. Discrete and Continuous Dynamical Systems Series B, 2019, 24(4): 1989-2015.
[3] MORGADO LUISA, REBELO MAGDA. Well-Posedness and Numerical Approximation of Tempered Fractional Terminal Value Problems[J]. Fractional Calculus and Applied Analysis, 2017, 20(5): 1239-1262.
[4] BENAISSA ABBES, GAOUAR SOUMIA. Asymptotic Stability for the Lamé System with Fractional Boundary Damping[J]. Computers and Mathematics with Applications, 2019, 77(5): 1331-1346.
[5] HUANG Can, ZHANG Zhimin, SONG Qingshuo. Spectral Methods for Substantial Fractional Differential Equations[J]. Journal of Scientific Computing, 2014, 74(3): 1554-1574.
[6] ZHANG Yuxin, LI Qian, DING Hengfei. High-Order Numerical Approximation Formulas for Riemann-Liouville (Riesz) Tempered Fractional Derivatives: Construction and Application (I) [J]. Applied Mathematics Computation, 2018, 329: 432-443.
[7] TUAN H T, TRINH HIEU MINH. Stability of Fractional-Order Nonlinear Systems by Lyapunov Direct Method[J]. IET Control Theory and Applications, 2018, 12(17): 2417-2422.
[8] GOMOYUNOV MIKHAIL. Fractional Derivatives of Convex Lyapunov Functions and Control Problems in Fractional Order Systems[J]. Fractional Calculus and Applied Analysis, 2017, 21(5): 1238-1261.
[9] DIETHELM KAI. The Analysis of Fractional Differential Equations[M]∥Morel Jean-Michel, Teissier Bernard. Lecture Notes in Mathematics, Vol. 2004. New York, Heidelberg, Berlin: Springer-Verlag, 2010: 1-40.
[10] LEONI GIOVANNI. A First Course in Sobolev Spaces[M]∥Michael E. Taylor Graduate Studies in Mathematics, Vol. 105. Los Angeles: American Mathematical Society, 2009: 607.
[11] HOLMES R B. Geometrical Functional Analysis and Its Applications[M]∥Graduate Texts in Mathematics, Vol. 24. New York, Heidelberg, Berlin: Springer-Verlag, 1975: 23.
[12] BORWEIN JONATHAN M, VANDERWERFF JON D. Convex Functions[M]. Cambridge: Cambridge University Press, 2010: 57-84.
[13] ROUCHE NICOLAS, HABETS P, LALOY M. Stability Theory by Liapunov's Direct Method[M]∥Applied Mathematical Sciences, Vol. 22. New York, Heidelberg, Berlin: Springer-Verlag, 1977: 31-34.
[14] HERBERT FEDERER. Geometric Measure Theroy[M]. New York: Springer-Verlag, 1969: 24. |