FANG Hao-Wen, SHEN Yao-Tian, WANG You-Jun. Existence of Positive Solution for a p-Laplace Equation with Singular Weight[J]. journal6, 2007, 28(2): 19-24.
[1] CHEN J Q,LI S J.On Mutiple Solutions of Singular Quasilinear Equation on Ounded Domains [J].J. Math. Anal. Appl.,2002,275:733-746.[2] WANG Z Q,WILLEM M.Singular Minimization Problems [J].J. Differential Equations.,2002,161:307-320.[3] AZORERO J G,ALONSO I P.Multiplicity of Solutions for Elliptic Problems with Critical Exponent or with a Nonsymmetric Term [J].American Math. Soc.,1991,323(2):877-895.[4] BREZIS H,NIRENBERG L.Positive Solutions of Nonlinear Elliptic Equation Involving Critical Sobolev Exponents [J].Comm. Pure Appl. Math.,1983,36:437-477.[5] EGNELL H.Elliptic Boundary Value Problem with Singular and Critical Nonliearities [J].Indiana Univ. Math. J.,1989,38(2):235-251.[6] CHOU K S,CHU C W.On the Best Constant for a Weighted Sobolev-Hardy Inequality [J].J. London Math. Soc.,1993,48(2):137-151.[7] LINOS P L.The Concentration-Compactness Principle in the Caculus of Varations,Part I and Part II [J].Rev. Iberoamericana,1985,1:141-201.[8] STRUWE M.Variational Methods,Application to Nonlinear Partial Differential Equations and Hamiltonian System [M].Springer,Berlin,1996.[9] XUAN B J.The Solvability of Qusilinear Brezis-Nirenberg-Type Problem with Singular Weight [J].Nonlinear. Anal.,2005,62:703-725.