[1] NOONAN J W, THOMAS D K.On the Second Hankel Drterminant of Areally Mean p-Valent Functions[J]. Transactions of the American Mathematical Society, 1976, 223(2): 337-346.
[2] PARK JI HYANG, KUMAR VIRENDRA, CHO NAK EUN. Sharp Coefficient Bounds for the Quotient of Analytic Functions[J]. Kyungpook Mathematical Journal, 2018, 58(2): 231-242.
[3] LECKO ADAM, SIM YONG JAE, S〖DD(-*3/4〗'〖DD)〗MIAROWSKA BARABARA. The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions of Order 1/2[J]. Complex Analysis and Operator Theory, 2019, 13: 2231-2238.
[4] CHO NAK EUN, KOWALCZYK BOGUMILA, KWON SANG, et al. Some Coefficients Related to the Third Hankel Determinant for Strongly Starlike Functions of Order Alpha[J]. Journal of Mathematical of inequalities, 2017, 11(2): 429-439.
[5] KWON OH SANG, SIM YOUNG JAE. The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions with Real Coefficients[J]. Mathematics, 2019, 7(8): 721-735.
[6] THOMAS DEREK, TUNESKI NIKOLA. Some Unifying Inequalities for Starlike Functions in Half-Plane and a Sector[J]. Filomat, 2018, 32(6): 2091-2100.
[7] PARK JI HYANG, KUMARVIRENDRA, CHO NAK EUN. Sharp Coefficient Bounds for the Quotient of Analytic Functions[J]. Kyungpook Marhematical Journal, 2018, 58(2): 231-242.
[8] DARUS MASLINA, THOMAS DEREK. On Coefficients of Alpha-Logarithmically Covex Functions[J]. Jānābha, 2015, 45: 31-36.
[9] THOMAS DEREK. On the Coefficients of Bazilevi Functions with Logarithmic Growth[J]. Indian Journal of Mathematics, 2015, 57(3): 403-418.
[10] POMMERENKE CHRISTIAN. Univalent Functions[M]. Gottingen: Vandenhoeck and Ruprecht, 1975: 72-75.
[11] GRENANDER U, SZEG G, KAC M. Toeplitz Forms and Their Applications[M]. California Monographs in Mathematical Sciences. Berkeley: University California Press, 1958: 102-105.
|