(1.Department of Mathematics,Shaoyang College,Shaoyang 422000,Hunan China;2.Hunan Building Materials College,Hengyang 421008,Hunan China;3.Department of Mathematics,Hunan Normal University,Changsha 410081,China)
[1] 洪渊.单圈图谱的上界 [J].华东师范大学学报(自然科学版),1986,(1):31-34.[2] 吴小军,张健.单圈图的第2个特征值的下确界 [J].同济大学学报,1995,23(2):206-209.[3] 吴越,陆磊.关于树和单圈图的第k大特征值 [J].武汉纺织工学院学报,1997,10(4):38-41.[4] 吴小军.单圈图的特征值的上界 [J].同济大学学报,1991,19(2):221-226.[5] 徐光辉.单圈图的最小特征值的上界 [J].浙江林学院学报,1998,15(3):304-309.[6] 徐光辉,徐群芳,王胜奎.单圈图的最小特征值的Sharp上界 [J].宁波大学学报(理工版),2003,15(3):225-227.[7] SCHWENK A.Computing the Characteristic Polynomial of a Graph,Graph and Combinatorics,Lecture Notes in Mathematics 40b [M].Berlin:Springer-Verlag,1974.[8] COMSTANTINE G.Lower Bounds on the Spectra of Symmetric Matrices with Nonnegative Entries [J].LAA,1985,65:171-178.[9] CVETKOVIC D,DOOB M,SACHS H.Spectra of Graphs:Theory and Applications(3rd Revised and Enlarged Edition) [M].Heidelberg,Leipzig:J. A. Barth Verlag,1995.[10] 张晓东,李炯生.树的Laplace矩阵的最大和次大特征值 [J].中国科学技术大学学报,1998,28(5):513-518.[11] 柳柏廉.组合矩阵论 [M].北京:科学出版社,1996.