[1] BOT RADU IOAN, GRAD SORIN-MIHAI, WANKA GERT. New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems[J]. Journal of Optimization Theory and Applications, 2007, 135(2): 241-255.
[2] 赵丹,孙祥凯.复合凸优化问题的稳定强对偶[J].吉林大学学报(理学版),2013(3):107-109.
[3] 孙祥凯.复合凸优化问题全对偶性的等价刻画[J].吉林大学学报(理学版),2015(53):33-36.
[4] SUN Xiangkai, LONG Xianjun, ZENG Jing. Constraint Qualifications Characterizing Fenchel duality in Composed Convex Optimization[J]. Journal of Nonlinear and Convex Analysis, 2016, 17(2): 325-347.
[5] FANGDonghui, WANG Xianyun. Stable and Total Fenchel Duality for Composed Convex Optimization Problems[J]. Acta Mathematicae Applicatae Sinica, English Series, 2018, 34(4): 813-827.
[6] FANGDonghui, YANG Ting, WANG Xianyun, et al. Stable and Total Fenchel Dualities for DC Composite Optimization Problems in Locally Convex Spaces[J]. Journal of Nonlinear and Convex Analysis, 2020, 21(1): 319-339.
[7] FANG Donghui, ANSARI QAMRUL HASAN, YAO JEN-CHIH. New Regularity Conditions and Fenchel Dualities for DC Optimization Problems Involving Composite Functions[EB/OL]. (2020-03-12)[2020-03-26] . https:∥doi.org/10.1080/02331934.2020.1737864
[8] HARADARYOHEI, KUROIWA DAISHI. Lagrange-Type Duality in DC Programming Problems with Equivalent DC Inequalities[J]. Journal of Inequalities and Applications, 2016(1): 276-290.
[9] WU Chenchen, WANG Yishui, LU Zaixin, et al. Solving the Degree-Concentrated Fault-Tolerant Spanning Subgraph Problem by DC Programming[J]. Mathematical Programming, 2018, 169(1): 255-275.
[10] JEYAKUMAR V, LEE G M, LINH NGUYEN THI HONG. Generalized Farkas' Lemma and Gap-Free Duality for Minimax DC Optimization with Polynomials and Robust Quadratic Optimization[J]. Journal of Global Optimization, 2016, 64(4): 679-702.
[11] SUN Xiangkai, LONG Xianjun, LI Minghua.Some Characterizations of Duality for DC Optimization with Composite Functions[J]. Optimization, 2017,66(9): 1425-1443.
[12] ZALINESCU C. Convex Analysis In General Vector Spaces[M].New Jersey: World Scientific, 2002: 75-83.
|