[1] HARDY G H.Note on a Theorem of Hilbert Concerning Series of Positive Terems [M].Proceedings London Math. Soc.,1925,23(2):XLV-XLVI.[2] 杨必成.一个实齐次的Hilbert 型积分不等式 [J].吉林大学学报:理学版,2009,47(5):887-892.[3] 谢子填,付本路.一个新的有最佳常数的Hilbert型积分不等式 [J].武汉大学学报:理学版,2009,55(6):637-640.[4] XIE Zi-tian,ZENG Zheng.A Hilbert-Type Integral Inequality Whose Kernel is a Homogeneous form of Degree-3 [J].J. Math. Appl.,2008(339):324-331.[5] ZENG Zheng,XIE Zi-tian.A Hilbert’s Inequality with a Best Constant Factor [J].Journal of Inequalities and Applications,2009,Article ID 820176,8 Pages doi:10.1155/2009/820176.[6] XIE Zi-tian,ZENG Zheng.The Hilbert-Type Integral Inequality with the System Kernel of -λ Degree Homogeneous form [J].Kyungpook Mathematical Journal,2010(50):297-306.[7] ZENG Zheng,ZIE Zi-tian.On a New Hilbert-Type Integral Inequality with the Integral in Whole Plane [J].Journal of Inequalities and Applications,2010,Article ID 256796,8 Pages,2010.doi:10.1155/2010/256796.[8] 谢子填,杨必成,曾峥.一个新的实齐次核的Hilbert型积分不等式 [J].吉林大学学报:理学版,2010,48(6):941-945.[9] XIE Zi-tian,ZENG Zheng.A Hilbert-Type Integral Inequality with a Non-Homogeneous form and a Best Constant Factor [J].Advances and Applications in Mathematical Sciens,2010,3(1):61-71.[10] 谢子填,杨必成,曾峥.一个新的实齐次核的Hilbert 型积分不等式 [J].吉林大学学报:理学版,2010,48(6):941-945.[11] 谢子填,曾峥.一个新的有最佳常数因子的Hilbert不等式 [J].湘潭大学自然科学学报,2010,32(3):1-4. |