摘要:在许多实际的分布式多传感器系统中,系统的动态或传感器的观测方程是非线性的.解决分布式多传感器非线性系统的状态估计问题,通常采用的一种方法是分布式扩展卡尔曼滤波.但由于模型的线性化误差,EKF的滤波效果在很多情况下并不能令人满意.另外,在许多实际应用中,模型的线性化过程比较繁杂,而且也不容易得到.为了有效解决分布式多传感器非线性系统的状态估计问题,提出了一种基于不敏卡尔曼滤波的状态估计技术.不敏卡尔曼滤波是最近提出的一种新的非线性滤波方法.由于不需要对非线性系统进行线性化,不敏卡尔曼滤波可以很容易地应用于非线性系统的状态估计,并且其性能也要优于扩展卡尔曼滤波.仿真结果说明分布式不敏卡尔曼滤波方法的性能要优于分布式扩展卡尔曼滤波方法.