journal6 ›› 2005, Vol. 26 ›› Issue (3): 13-19.

• 数学 • 上一篇    下一篇

椭圆方程的很弱解估计

  

  1. (湖南师范大学数学与计算机科学学院,湖南 长沙 410081)
  • 出版日期:2005-07-15 发布日期:2012-09-22

Estimates for Very Weak Solutions to Elliptic Equations

  1. (Department of Mathematics,Hunan Normal University,Changsha 410081,China)
  • Online:2005-07-15 Published:2012-09-22
  • About author:ZHOU Shu-qing(1968-),male,was born in Shaoyang County,Hunan Province,Ph.D.,associate professor of Department of Mathematics,Hunan Normal University;research area is partial differential equations.
  • Supported by:

    The National Natural Science Foundation of China(A0324632)

摘要:利用以极大函数表示的关于Sobolev函数的一个逐点估计,来构造全局的Lipschitz连续的检验函数,并利用Hardy不等式,得到方程-div A(x,Du)+B(x,u)=div(|F|p-2F)在一定条件下的很弱解全局估计.作为推论,得出方程-div A(x,Du)=0在零边值条件下只有零解.

关键词: Hardy不等式, 很弱解, Lipschitz, 连续, 全局估计

Abstract: Using a pointwise inequality for Sobolev functionsin terms of maximum function to construct a global Lipschitz continuous testing function and using Hardy’s inequality,the author obtains global estimates for very weak solutions to quasi-linear elliptic equation div A(x,Du)+B(x,u)=-div(|F|p-2F) satisfying certain conditions listing in the following.

Key words: Hardy&rsquo, s inequality, very weak solution, Lipschitz continuous, global estimate

公众号 电子书橱 超星期刊 手机浏览 在线QQ