journal6 ›› 2002, Vol. 23 ›› Issue (4): 62-67.

• 数学 • 上一篇    下一篇

图的子图中(n,r)-正交因子分解

  

  1. (1.邵阳高等专科学校,湖南 邵阳 422004;2.湘潭工学院数学系,湖南 湘潭 411201;3.湖南师范大学数学系,湖南 长沙 410081)
  • 出版日期:2002-12-15 发布日期:2012-11-09

(n,r )-Orthogonal Factorizations in Subgraphs of Graphs

  1. (1.Shaoyang College,Shaoyang 422004,Hunan China;2.Department of Mathematics,Xiangtan Polytechnic University, Xiangtan 411201,Hunan China;3.Department of Mathematics,Hunan Normal University,Changsha 410081,China)
  • Online:2002-12-15 Published:2012-11-09
  • About author:XU Li-xin(1964-),male,was born in Shaoyang,Hunan Pvovince,lecturer of Shaoyang College,area of research is graph theory and grouping optimization.

摘要:设图G的顶点集为V(G),边集为E(G),g和f是定义在V(G)上的2个整值函数,满足对于一切x∈V(G),g(x)≤f(x).若G是一个(mg+rn,mf-rn)-图,1≤n<m,r≥2,且对于x∈V(G),有g(x)≥k≥1,则存在G的一个子图G′,使得G′具有一个(f,g)-因子(n,r)-正交于G的任意给定子图H,其中|E(H)|=nk.

关键词: 图, 因子, 正交

Abstract: Let G be a graph with vertex set V(G) and edge set E(G),and let g and f be two integer-valued functions defined on V(G) such that g(x)≤f(x) for all x∈V(G).It is proved that if G is an (mg+rn,mf-rn)-graph,1≤n<m,r≥2,and g(x)≥k≥1 for all x∈V(G), then there exists a subgraph G′ of G such that G′ has a (g,f)-factorization (n,r )-orthogonal to any given subgraph H of G with |E(H)|=nk.

Key words: graph, factorization, orthogonal

公众号 电子书橱 超星期刊 手机浏览 在线QQ