[1] DINKELBACH WERNER. On Nonlinear Fractional Programming[J]. Management Science, 1967, 13(7): 492-498.
[2] BECTOR C R, CHANDRA S, HUSAIN I. Optimality Conditions and Duality in Subdifferentiable Multiobjective Fractional Programming[J]. Journal of Optimization Theory and Applications, 1993, 79(1): 105-125.
[3] 王文君.集函数极小极大分式规划的最优性与对偶理论[D].西安:西安电子科技大学,2011:19-28.
[4] SCHAIBLE S. Fractional Programming. II, on Dinkelbach's Algorithm[J]. Management Science, 1976, 22(8): 868-873.
[5] SUN Xiangkai, YI Chai. Optimality Conditions for DC Fractional Programming Problems[J].Advances in Mathematics, 2014, 43(6): 895-904.
[6] 卢厚佐.多目标分式规划问题的最优性条件和对偶[D].重庆:重庆师范大学,2015:26-29.
[7] LIU J C, KIMURA Y, TANAKA K. Three Types Dual Model for Minimax Fractional Programming[J]. Computers & Mathematics with Applications, 1999, 38(7/8): 143-155.
[8] LIN J Y, SHEU R L. Modified Dinkelbach-Type Algorithm for Generalized Fractional Programs with Infinitely Many Ratios[J]. Journal of Optimization Theory and Applications, 2005, 126(2): 323-343.
[9] FANG Donghui, LI Chong, NG K F. Constraint Qualifications for Optimality Conditions and Total Lagrange Dualities in Convex Infinite Programming[J]. Nonlinear Analysis, 2010, 73(5): 1143-1159.
[10] FANG Donghui, LI Chong, NG K F. Constraint Qualifications for Extended Farkas's Lemmas and Lagrangian Dualities in Convex Infinite Programming[J]. SIAM Journal on Optimization, 2010, 20(3): 1311-1332. |