ZHENG Qinghui, HU Xingxing, WANG Xianyun. Relaxed Total Lagrange Duality and Optimality Conditions for the Convex Infinite Programming[J]. Journal of Jishou University(Natural Sciences Edition), 2022, 43(3): 26-31.
[1] BOT RADUIOAN,GRAD SORIN-MIHAI,WANKA GERT.On Strong and Total Lagrange Duality for Convex Optimization Problems[J].Journal of Mathematical Analysis and Applications,2008,337(2):1315-1325.
[2] FANG Donghui,LI Chong,NG KUNG FU.Constraint Qualifications for Extended Farkas's Lemmas and Lagrangian Dualities in Convex Infinite Programming[J].SIAM Journal on Optimization,2010,20(3):1311-1332.
[3] FANG Donghui,LI Chong,NG KUNG FU.Constraint Qualifications for Optimality Conditions and Total Lagrange Dualities in Convex Infinite Programming[J].Nonlinear Analysis:Theory,Methods Applications,2010,73(5):1143-1159.
[4] LI Chong,NG KUNG FU,PONG Tingkei.Constraint Qualifications for Convex Inequality Systems with Applications in Constrained Optimization[J].SIAM Journal on Optimization,2008,19(1):163-187.
[5] DINH NGUYEN,GOBERNA MIGUEL A,LOPEZ MARCO A,et al.Relaxed Lagrangian Duality in Convex Infinite Optimization:Reducibility and Strong Duality[EB/OL].(2021-07-03)[2021-12-20] .https:∥doi.org/10.48550/arXiv.2106.01662.
[6] DINH NGUYEN,GOBERNA MIGUEL A,LOPEZ MARCO A,et al.Relaxed Lagrangian Duality in Convex Infinite Optimization:Reverse Strong Duality and Optimality[EB/OL].(2021-07-17)[2021-12-20].https:∥doi.org/10.48550/arXiv.2106.09299.
[7] 〖JP2〗ZALINESCU CONSTANTIN.Convex Analysis in General Vector Spaces[M].New Jersey:World Scientific,2002:75-106.