[1] DINH NGUYEN,GOBERNA MIGUEL A,LOPEZ MARCO,et al.New Farkas-Type Constraint Qualifications in Convex Infinite Programming[J].ESAIM:Control,Optimisation and Calculus of Variations,2007,13(3):580-597.
[2] FANG Donghui,LI Chong,Ng KUNG FU.Constraint Qualifications for Extended Farkas's Lemmas and Lagrangian Dualities in Convex Infinite Programming[J].SIAM Journal on Optimization,2010,20(3):1311-1332.
[3] FANG Donghui,LI Chong,Ng KUNG FU.Constraint Qualifications for Optimality Conditions and Total Lagrange Dualities in Convex Infinite Programming[J].Nonlinear Analysis:Theory,Methods& Applications,2010,73(5):1143-1159.
[4] BOT RADU IOAN,GRAD SORIN-MIHAI,WANKA GERT.New Constraint Qualification and Conjugate Duality for Composed Convex Optimization Problems[J].Journal of Optimization Theory and Applications,2007,135(2):241-255.
[5] LI Gang,ZHOU Yuying.The Stable Farkas Lemma for Composite Convex Functions in Infinite Dimensional Spaces[J].Acta Mathematicae Applicatae Sinica:English Series,2015,31(3):677-692.
[6] 胡玲莉,方东辉.带锥约束的复合优化问题的最优性条件[J].数学物理学报:A 辑,2018,38(6):1112-1121.
[7] DINH NGUYEN,MORDUKHOVICH BORIS S,NGHIA TRAN TA.Qualification and Optimality Conditions for DC Programs with Infinite Constraints[J].Acta Mathematicae Vietnam,2009,34(1):125-155.
[8] DINH NGUYEN,NGHIA TRAN TA,VALLET GUY.Closedness Condition and Its Applications to DC Programs with Convex Constraints[J].Optimization,2010,59(4):541-560.
[9] FANG Donghui,ZHAO Xiaopeng.Local and Global Optimality Conditions for DC Infinite Optimization Problems[J].Taiwanese Journal of Mathematics,2014,18(3):817-834.
[10] FANG Donghui,ZHANG Yong.Optimality Conditions and Total Dualities for Conic Programming Involving Composite Function[J].Optimization,2019,69(2):305-327.
[11] LONG Xianjun,SUN Xiangkai,PENG Zaiyun.Approximate Optimality Conditions for Composite Convex Optimization Problems[J].Journal of the Operations Research Society of China,2017,5(4):469-485.
[12] BOT RADU IOAN,HODREA IOAN BOGDAN,WANKA GERT.ε-Optimality Conditions for Composed Convex Optimization Problems[J].Journal of Approximation Theory,2008,153(1):108-121.
[13] ZALINESCU CONSTANTIN.Convex Analysis in General Vector Spaces[M].New Jersey:World Scientific,2002:39-79.
|