吉首大学学报(自然科学版)

• 数学 • 上一篇    下一篇

向量多项式优化问题的数值方法

彭雪珂,周光明,赵文杰   

  1. (湘潭大学数学与计算科学学院,湖南 湘潭 411105)
  • 出版日期:2019-07-25 发布日期:2019-07-31
  • 通讯作者: 周光明(1971—),男,湖南涟源人,湘潭大学数学与计算科学学院教授,博士,硕士生导师,主要从事最优化理论与方法研究.
  • 基金资助:

    国家自然科学基金资助项目(11671342)

Numerical Methods for Vector Polynomial Optimization Problem

PENG Xueke, ZHOU Guangming, ZHAO Wenjie   

  1. (School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan China)
  • Online:2019-07-25 Published:2019-07-31

摘要:

向量多项式优化问题中的目标函数和约束条件都是由多项式描述的.先将多目标多项式函数分别通过主要目标法、线性加权和法和理想点法等转化为单目标多项式函数,再利用Lasserre松弛方法求解该多项式优化问题,从而得到原向量多项式优化问题的弱有效解或有效解.数值实验结果表明该数值方法是有效的.

关键词: 向量多项式优化, 多项式优化, 目标函数, 约束条件, 弱有效解

Abstract:

For vector polynomial optimization problem, the objective function and constraint condition are all described in polynomial. Firstly, the multi-objective polynomial function is transformed into the single-objective polynomial function by using the main objective method, linear weighted sum method and ideal point method respectively. Then Lasserre relaxation method is applied to solve the polynomial optimization problem, and its optimal solution is obtained, which is also the weak efficient solution or effective solution of the original vector polynomial optimization problem. Numerical experiments show that the proposed numerical methods are effective.

Key words: vector polynomial optimization, polynomial optimization, objective function, constraint condition, weak efficient solution

公众号 电子书橱 超星期刊 手机浏览 在线QQ