journal6 ›› 2007, Vol. 28 ›› Issue (1): 14-15.
• Mathematics • Previous Articles Next Articles
Online:
Published:
Abstract: Let n be a positive integer,and let d(n) and φ(n) denote the divisor function and Euler’s totient function respectively.Let p be an odd prime.It is proved that if n=1,2,4,or p,then the equation xd(n)+yd(n)=zφ(n) has infinitely many primitive solutions (x,y,z);if n≠1,2,4 p or p2,then the equation has no primitive solution (x,y,z).
Key words: higher Diophantine equation;primitive solution;divisor function;Euler&rsquo, s totient function
LE Mao-Hua. Primitive Solutions of the Diophantine Euqation xd(n)+yd(n)=zφ(n)[J]. journal6, 2007, 28(1): 14-15.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://zkxb.jsu.edu.cn/EN/
https://zkxb.jsu.edu.cn/EN/Y2007/V28/I1/14