[1] WANG M L.Solitary Wave Solution for Boussinesq Equations [J].Physics Letters A,1995,199:162-172.[2] FAN E G,ZHANG H Q.The Homogeneous Balance Method for Solving Nonlinear Soliton Equations [J].Acta Physica Sinica,1998,47(3):353-362.[3] PARKES E J,DUFFY B R.Travelling Solitary Wave Solutions to a Compound KdV-Burgers Equation [J].Physics Letters A,1997,229:217-220.[4] FAN E G.Extended Tanh-Function Method and Its Applications to Nonlinear Equations [J].Physics Letters A,2000,277:212-218.[5] DEMIRAY H.A Note on the Exact Travelling Wave Solution to the KdV-Burgers Equation [J].Wave Motion,2003,38:367-369.[6] YAN C T.A Simple Transformation for Nonlinear Waves [J].Physics Letters A,1996,224:77-84.[7] LIU S K,FU Z T,LIU S D,et al.Expansion Method About the Jacobi Elliptic Function and Its Applications to Nonlinear Wave Equations [J].Acta Physica Sinica,2001,50(11):2 068-2 073.[8] FU Z T,LIU S D,LIU S K,et al.Solutions to Generalized mKdV Equation [J].Communication in Theoretical Physics,2003,40(6):641-644.[9] XIE Y X,TANG J S.A Simple Fast Method in Finding the Analytical Solutions of a Class of Nonlinear Partial Differential Equations [J].Acta Physica Sinica,2004,53(9):2 828-2 830.[10] XIE Y X,TANG J S.A Note on Paper “A Simple Fast Method in Finding the Analytical Solutions of a Class of Nonlinear Partial Differential Equations” [J].Acta Physica Sinica,2005,54(3):1 036-1 038.[11] XIE Y X,TANG J S.New Solitary Wave Solutions to the KdV-Burgers Equation [J].International Journal of Theoretical Physics,2005,44(3):293-301.[12] XIE Y X,TANG J S.A Simple Method for Constructing the Sech2-Type and Csch2-Type Solitary Wave Solutions of Nonlinear Wave Equations [J].Nuovo Cimento B,2005,120(3):253-259.[13] XIE Y X,TANG J S.Solutions for a Class of Nonlinear Wave Equations [J].Fizika A,2005,14(3):233-244.[14] XIE Y X,TANG J S.A Unified Approach in Seeking the Solitary Wave Solutions to Sine-Gordon Type Equations [J].Chinese Physics,2005,14(7):1 303-1 306.[15] XIE Y X,TANG J S.New Explicit Exact Solutions of the Born-Infeld Equation [J].International Journal of Theoretical Physics,2006,45(1):7-17.[16] XIE Y X,TANG J S.A Unified Method for Solving Sinh-Gordon-Type Equations [J].Nuovo Cimento B,2006,121(2):115-120.[17] XIE Y X,TANG J S.The Superposition Method in Seeking the Solitary Wave Solutions to the KdV-Burgersequation [J].Pramana-Journal of Physics,2006,66(3):479-483.[18] XIE Y X.A New Method for Solving the KdV Equation and KdV-Burgers Equation [J].Nuovo Cimento B,2006,121(6):599-604.[19] XIE Y X.Explicit and Exact Solutions to the KdV-Burgers Equation [J].Nuovo Cimento B,2006,121(7):689-697.[20] XIE Y X,TANG J S.A Unified Trial Function Method in Finding the Explicit and Exact Solutions to Three NPDEs [J].Physica Scripta,2006,74(8):197-200.[21] XIE Y X,SU K L,ZHU S H.A Simple Approach to Solving Double Sinh-Gordon Equation [J].Chinese Physics,2008,17(5):1 581-1 586.[22] XIE Y X.Explicit and Exact Solutions to the mKdV-Sine-Gordon Equation [J].Modern Physics Letters B,2008,22(15):1 471-1 485.[23] FU Z T,LIU S D,LIU S K.Notes on Solutions to Burgers-Type Equations [J].Communication in Theoretical Physics,2004,41(4):527-530.[24] FU Z T,ZHANG L,LIU S D,et al.Basic Pattern in Atmospheric Turbulence Model [J].Communication in Theoretical Physics,2004,41(6):845-848. |