GONG Yan. A Class of Neumann Problems of Singular Elliptic Equations with Critical Sobolev-Hardy Exponents[J]. Journal of Jishou University(Natural Sciences Edition), 2022, 43(1): 15-19.
[1] COMTE M,KNAAP M C.Existence of Solutions of Elliptic Equations Involving CriticalSobolev Exponents with Neumann Boundary Condition in General Domains[J].Differential Integral Equations,1991,4(6):1133-1146.
[2] LIONS P L.The Concentration-Compactness Principal in the Calculus of Variations.The Locally Compact Case,Part 1[J].Annales de I'Institut Henri Poincaré C,Analyse Non-Linéaire,1984,1(2):109-145.
[3] GHOUSSOUB N,YUAN C.Multiple Solutions for Quasi-Linear PDEs Involving the Critical Sobolev and Hardy Exponents[J].Transactions of the American Mathematical Society,2000,352(12):5703-5743.
[4] COMTE M,KNAAP M C.Solutions of Elliptic Equations Involving Critical Sobolev Exponents with Neumann Boundary Conditions[J].Manuscripta Mathematica,1990,69(12):43-70.
[5] CAO Daomin,NOUSSAIR EZZAT S.The Effect of Geometry of the Domain Boundary in an Elliptic Neumann Problem[J].Advances in Differential Equations,2001,6(8):931-958.
[6] 胡爱莲,张正杰.含有Sobolev-Hardy临界指标的奇异椭圆方程Neumann问题无穷多解的存在性[J].数学物理学报,2007,27A(6):1025-1034.
[7] 公艳.包含临界Sobolev-Hardy指数的奇异椭圆方程的Neumann问题[J].吉首大学学报(自然科学版),2009,30(5):26-29.
[8] 王刚刚.具有临界指数的奇异椭圆方程Neumann边值问题正解的存在性[D].上海:上海交通大学,2013.
[9] 公艳.包含临界Sobolev-Hardy指数的奇异椭圆方程的Neumann问题[J].山东农业大学学报(自然科学版),2019,50(5):913-917.