[1] 高振峰. 智能电网支撑迁安市智慧城市建设项目方案研究[D].北京:华北电力大学,2015.
[2] JIANG D, ZHANG P, LV Z, et al. Energy-Efficient Multi-Constraint Routing Algorithm with Load Balancing for Smart City Applications[J]. IEEE Internet of Things Journal, 2016, 3(6): 1437-1447.
[3] MASSANA J, POUS C, BURGAS L, et al. Identifying Services for Short-Term Load Forecasting Using Data Driven Models in a Smart City Platform[J]. Sustainable cities and society, 2017, 28: 108-117.
[4] 钟清,孙闻,余南华,等.主动配电网规划中的负荷预测与发电预测[J].中国电机工程学报,2014,34(19):3050-3056.
[5] DAUT M A M, HASSAN M Y, ABDULLAH H, et al. Building Electrical Energy Consumption Forecasting Analysis Using Conventional and Artificial Intelligence Methods: A Review[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1108-1118.
[6] 李震,张思,任娴婷,等.基于数据驱动的线性聚类ARIMA长期电力负荷预测[J].科学技术与工程,2020,20(16):6497-6504.
[7] 赵峰,孙波,张承慧.基于多变量相空间重构和卡尔曼滤波的冷热电联供系统负荷预测方法[J].中国电机工程学报,2016,36(2):399-406.
[8] 满达,张卓凡,张金金,等.基于LSTM的高校建筑电力负荷预测方法[J].建筑电气,2021,40(11):58-63.
[9] 王义军,李殿文,高超,等.基于改进的PSO-SVM的短期电力负荷预测[J].电测与仪表,2015,52(3):22-25.
[10] 陆继翔,张琪培,杨志宏,等.基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J].电力系统自动化,2019,43(8):131-137.
[11] 陈祖成,王硕禾,王刚,等.基于聚类与SVM短期负荷预测的算法[J].承德石油高等专科学校学报,2018,20(6):27-31.
[12] WANG Y, CHEN Q, SUN M, et al. An Ensemble Forecasting Method for the Aggregated Load with Subprofiles[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3906-3908.
[13] HOSKING J R M, NATARAJAN R, GHOSH S, et al. Short-Term Forecasting of the Daily Load Curve for Residential Electricity Usage in the Smart Grid[J]. Applied Stochastic Models in Business and Industry, 2013, 29(6): 604-620.
[14] RAHMAN A, SRIKUMAR V, SMITH A D. Predicting Electricity Consumption for Commercial and Residential Buildings Using Deep Recurrent Neural Networks[J]. Applied energy, 2018, 212: 372-385.
[15] 唐美丽,胡琼,马廷淮.基于循环神经网络的语音识别研究[J].现代电子技术,2019,42(14):152-156.
[16] 金宸,李维华,姬晨,等.基于双向LSTM神经网络模型的中文分词[J].中文信息学报,2018,32(2):29-37.
[17] 史佳琪,张建华.基于多模型融合Stacking集成学习方式的负荷预测方法[J].中国电机工程学报,2019,39(14):4032-4042.
[18] FREUND Y, SCHAPIRE R E. A Decision-Theoretic Generalization of On-Line Learning and an Application To Boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
[19] 林顺富,郝朝,汤晓栋,等.基于数据挖掘的楼宇短期负荷预测方法研究[J].电力系统保护与控制,2016,44(7):83-89.
[20] 谢明磊.基于LSTM网络的住宅负荷短期预测[J].广东电力,2019,32(6):108-114.
[21] 周宇,刘海璇,胡卫丰,等.基于K均值聚类的居民用电行为特征分析[J].计算机与数字工程,2021,49(5):1018-1023;1035.
|