[ 1] MAHLER K. Zur Approximation Algebraischer Zahlen I: ??berden Qr??ssfen Primtailer Bin??rer Formen [ J] . Math. Ann. , 1933, ( 107) :691- 730.[ 2] GEL??FOND A O. Sur la Divisibilit?? de la Diff??rence Des Puissances de Deux Nombres Entiers Par Une Puissance d??un id??al Premier[ J] . Mat. Sb. , 1940, ( 7) : 7- 25.[ 3] TERAI N.The Diophantine Equation ax + by = cz [ J] . Proc. Japan Acad. Ser. A Math. Sci. , 1994, 70: 22- 26.[ 4] CAO Z- F. A Note on the Diophantine Equation ax + by = cz [ J] . Acta Arith, 1999, 91: 85- 93.[ 5] LEMao- hua. On the Diophantine Equation ax + by = cz [ J] . Journal of Changchun Teachers College( Naturnal Sciences Edition) ,1985, 2( 1) : 50- 62.[ 6] LE Mao- hua. A Note on the Diophantine Equation ( m3 - 3m) x + ( 3m2 - 1) y = ( m2 + 1) z [ J] . Proc. Japan Acad Ser . A Math.Sci. , 1997, 73: 148- 149.[ 7] LE Mao- hua. On Terai??s Conjecture Concerning Pythagorean Numbers [ J] . Bull. Austral Math. Soc. , 2000, 61: 329- 334.[ 8] LE Mao- hua. On the Exponential Diophantine Equation ( m3 - 3m) x + ( 3m2- 1) y = ( m2 + 1) z [ J] . Publ. Math. Debrecen, 2001,58: 461- 466.[ 9] LE Mao- hua. A Conjecture Concerning the Exponential Diophantine Equation ax + by = cz [ J] . Acta. Arith, 2003, 106: 345- 353.[ 10] LE Mao- hua. On the Terai??s Conjecture Concerning the Exponential Diophantine Equation ax + by = cz [ J] . Acta Mathematica Sin-ica, 2003, 46( 2) : 245- 250.[ 11] TERAI N.The Diophantine Equation ax + by = cz ?? [ J] . Proc. Japan Acad Ser. A. Math. Sci. , 1995, 71: 109- 110.[ 12] TERAI N.The Diophantine Equation ax + by = cz ?? [ J] . Proc. Japan Acad Ser. A. Math. Sci. , 1996, 72: 20- 22.[ 13] TERAI N, TAKAKUWA K. A Note on the Diophantine Equation ax + by = cz [ J] . Proc. Japan Acad. Ser . A. Math. Sci. , 1997,73: 161- 164.[ 14] LE Mao-hua. An Open Problem Concerning the Exponential Diophantine Equation ax + by = cz [ J] . Publ. Math. Debrecen, to appear. |