[1] ZHOU S Q.Regularity of the Very Weak Solutions to Non-Homogeneous A-Harmonicsystems [J].Chinese Annals of Math.,2002,23A(3):283-288.[2] ZHOU S Q,WEN H Y,FANG H Q.On the Quality of the Very Weak Solutions to Nonhomogeneous A-Harmonic Systems [J].Acta. Math. Sci.,2003,23A(2):135-144.[3] IWANIC T,SBORDONE C.Weak Minima of Variational Integrals [J]. J. Reine Angew. Math.,1994,454:143-161.[4] GIACHETTI D,LEONETTI F,SCHIACHI R.On the Regularity of Very Weak Minima [J].Proc. Roy. Soc. Edinburgh,1996,126A:287-296.[5] GIACHETTI D,SCHIACHI R.Boundary Higher Integrability for the Gradient of Distibutional Solutions of Nonlinear Systems [J].Studia Math.,1997,123(2):175-184.[6] LEWIS J L.On the Very Weak Solutions of Certain Elliptic Systems [J].Comm. Part. Diff. Eqn.,1993,18:1 515-1 537.[7] DOLZMANN G,HUNGERBLER N,MLLER S.Uniqueness and Maximal Regularity for Nonlinear Elliptic Systems of n-Laplace Type with Measure Valued Right Hand Side [J].J. Reine Angew. Math.,2000,520:1-35.[8] YAN B.On a Reverse Estimate for Hodge Decompositions of p-Laplace Type Operators [J].J. Diff. Eqn.,2001,173:160-177.[9] ZHONG X.On nonhomogeneous Quasilinear Elliptic Equations [J].Dissertations,Ann. Acad. Sci. Math.,1998,117:1-46.[10] HEINONEN J,KILPEL?'INEN T,MARTIO O.Nonlinear Potential Theory of Degenerate Elliptic Equations [M].Oxford:Oxford University Press,1993.[11] LEWIS J L.Uniformly Fat Sets [J].Trans. Amer. Math. Soc.,1988,38:177-196.[12] MIKKONEN P.On the Wolf Potential and Quasilinear Elliptic Equations Involving Measures [J].Ann. Acad. Fenn. Ser. AI Math.,1996,104:1-71.[13] HEDBERG L I.On Certain Convolution Inequalities [J].Proc. Amer. Math. Soc.,1972,36:505-510.[14] EVANS L C,GARIEPY R F.Measure Theory and Fine Properties of Functions [M].Boca Rao,Florida:CRC Press,1992.[15] GIAQUINTA M.Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems [M].Princeton,New Jersey:Princeton Univ. Press,1983. |