[ 1] FURATE T. A \ B \ 0 Assure ( BrApBr)1q \ B( p+ 2r ) / qfor r \ 0, p \ 0, q \ 1With ( 1+ 2r ) q \ p + 2C [ J] . Proc. Amer. Math.Soc. , 1987, 101: 85- 88.[ 2] ANDO T, HIAI F. HÊlder Type Inequalities for Matrices [ J] . Math. Ineq. Appl. 1998, ( 1) : 1- 30.[ 3] OUELLETTE D V. Schur Complements and Statistics [ J] . Linear Algebra Appl. , 1981, 36: 187- 295.[ 4] BURNS F, CARLSON D, HAYNSWORTH E, et al. Generalized Inver se Farmulas Using the Schur Complement [ J] . SIAM J. Ap -pl. Math. , 1974, 26: 254- 259.[ 5] WANG B Y, ZHANG F Z. Schur Complements and Matrix Ineq uali ties of Hadamard Products [ J] . Linear andMultili near Algebra. ,1997, 43: 315- 326.[ 6] LIU J Z, ZHU L. A Minimum Principle and Estimates of the Eigenvalues for Schur Complements of Posi tive Semidefinite Hermitian Matrices[ J] . Linear Algebra Appl. , 1997, 265: 123- 145.[ 7] LIU J Z. Some Inequalities for Singular Values and Ei genvalues of Generalized Schur Complemen ts of Products of Matrices [ J] . Linear Algebra Appl. , 1999, 286: 209- 221.[ 8] 刘建州,谢清明1 矩阵乘积的 Schur余的奇异值估计[ J] .数学年刊( A 辑) , 1998, 19A: 285- 288.[ 9] LIU J Z. Some LÊ wner Par tial Orders of Schur Complements and Kronecker Products ofMatrices [ J] . Linear Algebra. Appl. , 1991,291: 143- 149.[ 10] 王伯英.控制不等式[M]. 北京: 北京师范大学出版社, 1990. |