LI Jingnan, LIU Huili. Quotient Option Pricing Based on O-U Process withStochastic Interest Rate[J]. Journal of Jishou University(Natural Sciences Edition), 2022, 43(2): 23-30.
[1] JOHN HULL,ALAN WHITE.Valuing Derivative Securities Using the Explicit Finite Difference Method[J].Journal of Financial and Quantitative Analysis,1990,25(1):573-592.
[2] VASICEK OLDRICH.An Equilibrium Characterization of the Term Structure[J].Journal of Financial Economics,1977(5):177-188.
[3] THOMAS S Y HO,LEE SANG-BIN.Term Structure Movements and Pricing Interest Rate Contingent Claims[J].The Journal of Finance,1986,41(5):1011-1029.
[4] COX JOHN C,JRJONATHAN E IINGERSOLL,ROSS STEPHEN A.A Theory of the Term Structure of Interest Rates[J].Econometrica,1985,53(2):385-407.
[5] 田萍,张屹山,赵世舜.随机利率下期权定价的探讨[J].数理统计与管理,2008,27(6):1117-1125.
[6] 冯奎.随机利率模型下的期权定价的实证分析[D].武汉:华中师范大学,2013:6-8.
[7] 贾念念,刘颖.基于CIR模型下的回望期权定价[J].时代金融,2020(17):104-106.
[8] 刘志飞,胡华.Hull-Whit利率下支付红利的混合分数布朗运动的欧式幂期权定价模型[J].科技经济导刊,2020,28(13):9-11.
[9] ZHANG PETER G.Exotic Options:A Guide to Second Generation Options[M].Singapore,New Jersey,London,Hong Kong:World Scientific Publishing Company,1998:6-17.
[10] 杨晓琳,刘丽霞.跳扩散模型下的商期权定价[J].辽宁大学学报(自然科学版),2015,42(4):301-306.
[11] 张明鸣.基于双指数跳扩散和Heston随机波动率模型下商期权定价研究[D].成都:西南财经大学,2017:11-16.
[12] SHREVE STEVEN E.Stochastic Calculus for Finance II:Continuous-Time Models[M].New York:Springer,2007:182-185.
[13] 赵攀.基于指数O-U过程的幂型欧式期权定价[J].贵州师范大学学报(自然科学版),2014,32(1):44-47.
[14] 孙彩灵,刘丽霞.具有不确定价格的最值期权定价[J].河北师范大学学报(自然科学版),2020,44(6):472-478.