The Number of Solutions of Simultaneous Pell Equations
(Department of Mathematics,Zhanjiang Normal College,Zhanjiang,Guangdong,China)
Online:2003-06-15
Published:2012-11-07
About author:LE Mao-hua(1952-),male,was born in Shanghai,professor of the department of Mathematic,Zhanjiang Normal College.
Supported by:
Supported by the National Natural Science Foundation of China(10271104),the Guangdong Provincial Natural Science Foundation (011781) and the Natural Science Foundation of the Education Department of Guangdong Province(0161)
[1] BENNETT M A.Solving Families of Simultaneous Pell Equations[J].J.Number Theory 1997,67(2):246-251.[2] ONO K.Euler′s Condordant Forms[J].Acta Arith.1996,78(2):102-123.[3] SCHLICKEWEI H P.S-Unit Equations Over Number Fields[J].Invent.Math.1990,102(1):95-107.[4] MASSER D W,RICKERT J H.Simultaneous Pell Equations[J].J.Number Theory ,1996,61(1):52-66.[5] BENNETT M A.On the Number of Solutions of Simultaneous Pell Equations[J].J.Reine Angew.Math.1998,(498):173-199.[6] HARDY G H,WRIGHT E M.An Introduction to the Theory of Numbers[M].Oxford University Press,Oxford 1938.[7] BAKER A,WSTHOLZ G W.Logarithmic Forms and Group Varieties[J].J.Reine Angew.Math.1993,(442):19-62.[8] RIBENBOIM P.The Fibonacci Numbers and the Arctic Ocean[A].BEHARA,FRITSCH,LINTZ.Symposia Gaussiana,Conf.A[C].Walter de Gruyter,Berlin,1995.