[1] COULLET P,ELPHICK C,REPAUX D.Nature of Spatial Chaos[J].Physical Review Letters,1987,58:431-434.
[2] DEE G T,VAN SAARLOOS WIM.Bistable Systems with Propagating Fronts Leading to Pattern Formation[J].Physical Review Letters,1988,60(25):2641-2644.
[3] ARONSON D G,WEINBERGER H F.Multidimensional Nonlinear Diffusion Arising in Population Genetics[J].Advances in Mathematics,1978,30(1):33-76.
[4] ZHU Guozhen.Experiments on Director Waves in Nematic Liquid Crystals[J].Physical Review Letters,1982,49(18):1332-1335.
[5] HORNREICH R M,LUBAN MARSHALL,SHTRIKMAN S.Critical Behavior at the Onset of k〖DD(-*2〗→〖DD)〗-Space Instability on the λ Line[J].Physical Review Letters,1975,35(25):1678-1681.
[6] 李娟,高广花.二维扩展Fisher-Kolmogorov方程的线性化紧差分格式的最大模误差分析[J].西南师范大学学报(自然科学版),2017,42(3):12-21.
[7] SWEILAMN H,ELSAKOUT D M,MUTTARDI M M.Numerical Solution for Stochastic Extended Fisher-Kolmogorov Equation[J].Chaos,Solitons and Fractals,2021,151:111213.DOI:10.1016/j.chaos.2021.111213.
[8] LI Shuguang,XU Da,ZHANG Jie,et al.A New Three-Level Fourth-Order Compact Finite Difference Scheme for the Extended Fisher-Kolmogorov Equation[J].Applied Numerical Mathematics,2022,178:41-51.
[9] DANUMJAYA P,PANI AMIYA K.Orthogonal Cubic Spline Collocation Method for the Extended Fisher-Kolmogorov Equation[J].Journal of Computational and Applied Mathematics,2005,174(1):101-117.
[10] MITTAL R C,DAHIYA SUMITA.A Study of Quintic B-Spline Based Differential Quadrature Method for a Class of Semi-Linear Fisher-Kolmogorov Equations[J].Alexandria Engineering Journal,2016,55(3):2893-2899.
[11] LI Xiang,DONG Zhiqiang,LI Yan,et al.A Fractional-Step Lattice Boltzmann Method for Multiphase Flows with Complex Interfacial Behavior and Large Density Contrast[J].International Journal of Multiphase Flow,2022,149:103982.DOI:10.1016/j.ijmultiphaseflow.2022.103982.
[12] SHAN Fang,DU Hongyan,CHAI Zhenhua,et al.Lattice Boltzmann Modeling of the Capillary Rise of Non-Newtonian Power-Law Fluids[J].International Journal for Numerical Methods in Fluids,2022,94(3):251-271.
[13] HAN Wenbo,CHEN Xueye.A Review on Microdroplet Generation in Microfluidics[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2021,43(5):247.DOI:10.1007/s40430-021-02971-0.
[14] 戴厚平,郑洲顺,段丹丹.变系数反应扩散方程的格子Boltzmann模型[J].云南大学学报(自然科学版),2016,38(4):524-529.
[15] KATAOKA TAKESHI,HANADA TAKAYA.New Lattice Boltzmann Model for the Compressible Navier-Stokes Equations[J].International Journal for Numerical Methods in Fluids,2019,91(4):183-197.
[16] 魏雪丹,戴厚平,李梦军,等.一维空间Riesz分数阶对流扩散方程的格子Boltzmann方法[J].计算物理,2021,38(6):683-692.
[17] 张继红,栾舒含,梁波.具非线性对流项热传导方程的有限差分法[J].大连交通大学学报,2022,43(5):115-117.
[18] SHAH KAMAL,NAZ HAFSA,SARWAR MUHAMMAD,et al.On Spectral Numerical Method for Variable-Order Partial Differential Equations[J].AIMS Mathematics,2022,7(6):10422-10438.
[19] IBRAHEEM GHADA H,TURKYILMAZOGLU MUSTAFA,AL-JAWARY M A.Novel Approximate Solution for Fractional Differential Equations by the Optimal Variational Iteration Method[J].Journal of Computational Science,2022,64:101841.DOI:10.1016/j.jocs.2022.101841.
[20] DEHGHAN MEHDI,SHAFIEEABYANEH NASIM.Local Radial Basis Function-Finite-Difference Method to Simulate Some Models in the Nonlinear Wave Phenomena:Regularized Long-Wave and Extended Fisher-Kolmogorov Equations[J].Engineering with Computers,2021,37:1159-1179.
|