Journal of Jishou University(Natural Sciences Edition) ›› 2021, Vol. 42 ›› Issue (6): 15-22.DOI: 10.13438/j.cnki.jdzk.2021.06.003
• Computer • Previous Articles Next Articles
LIAO Guangkai, ZHANG Zheng, NIU Yibo, SONG Zhiguo
Online:
2021-11-25
Published:
2022-01-21
LIAO Guangkai, ZHANG Zheng, NIU Yibo, SONG Zhiguo. Vehicle Re-Identification Based on Multi-Scale and Wavelet Spatial Attention[J]. Journal of Jishou University(Natural Sciences Edition), 2021, 42(6): 15-22.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zkxb.jsu.edu.cn/EN/10.13438/j.cnki.jdzk.2021.06.003
[1] LIAO Shengcai, HU Yang, ZHU Xiangyu, et al. Person Re-Identification by Local Maximal Occurrence Representation and Metric Learning[C/OL]. 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). (2015-05-06)[2021-07-05]. https:∥arxiv.org/abs/1406.4216. [2] ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable Person Re-Identification: A Benchmark[C/OL]. 2015 IEEE International Conference on Computer Vision (ICCV). (2015-12-07)[2021-07-05]. https:∥ieeexplore.ieee.org/document/7410490/authors#authors. [3] LIU Xinchen, LIU Wu, MA Huadong, et al. Large-Scale Vehicle Re-Identification in Urban Surveillance Videos[C/OL]. 2016 IEEE International Conference on Multimedia and Expo (ICME). (2016-07-11)[2021-07-05]. https:∥ieeexplore.ieee.org/document/7553002. [4] LIU Hongye, TIAN Yonghong, WANG Yaowei, et al. Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles[C/OL]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2016-06-01)[2021-07-05] https:∥ieeexplore.ieee.org/document/7780607. [5] KRIZHEVSKY ALEX, SUTSKEVER I, HINTON G, et al. Image Net Classification with Deep Convolutional Neural Networks[C/OL]. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2012-01-01)[2021-07-05]. https:∥sci-hub.se/10.1145/3065386. [6] SIMONYAN KAREN, ZISSERMAN ANDREW. Very Deep Convolutional Networks for Large-Scale Image Recognition[C/OL]. International Conference on Learning Representations(ICLR). (2015-04-10)[2021-07-05]. https:∥arxiv.org/abs/1409.1556. [7] SZEGEDY CHRISTIAN, LIU Wei, JIA Yangqing, et al. Going Deeper with Convolutions[C/OL]. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2014-09-17)[2021-07-05]. https:∥arxiv.org/abs/1409.4842. [8] HE Kaiming, ZHANG Xiangyu, REN Shaoqing. Deep Residual Learning for Image Recognition[C/OL].2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2015-10-15)[2021-07-05]. https:∥arxiv.org/abs/1512.03385. [9] WU Songtao, ZHONG Shenghua, LIU Yan. Deep Residual Learning for Image Steganalysis[J]. Multimedia Tools and Applications, 2018, 77(9): 10437-10453. [10] LIU Xinchen, LIU Wu, MEI Tao, et al. PROVID: Progressive and Multimodal Vehicle Reidentification for Large-Scale Urban Surveillance[J]. IEEE Transactions on Multimedia, 2017, 20(3): 645-658. [11] LIU H, TIAN Y, WANG Y, et al. Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles[C/OL]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR). (2016-06-27)[2021-07-05]. https:∥sci-hub.se/10.1109/cvpr.2016.238. [12] LIUHongye, TIAN Yonghong, WANG Yaowei, et al. Deep Joint Discriminative Learning for Vehicle Re-Identification and Retrieval[C/OL]. International Conference on Learning Representations(ICLR). (2018-02-22)[2021-07-05]. https:∥sci-hub.se/10.1109/icip.2017.8296310. [13] ZHANG Yiheng, LIU Dong, ZHA ZHENG-JUN. Improving Triplet-Wise Training of Convolutional Neural Network for Vehicle Re-Identification[C/OL]. 2017 IEEE International Conference on Multimedia and Expo (ICME). (2018-02-22)[2021-07-05]. https:∥www.researchgate.net/publication/319569730_Improving_triplet-wise_training_of_convolutional_neural_network_for_vehicle_re-identification. [14] SU Chi, LI Jianing, ZHANG Shiliang, et al. Pose-Driven Deep Convolutional Model for Person Re-identification[C/OL]. 2017 IEEE International Conference on Computer Vision (ICCV). (2017-07-25)[2021-07-05]. https:∥ieeexplore.ieee.org/document/8237689. [15] LI Dangwei, CHEN Xiaotang, ZHANG Zhang, et al. Learning Deep Context-Aware Features Over Body and Latent Parts for Person Re-Identification[C/OL]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2017-07-25)[2021-07-05]. https:∥www.researchgate.net/publication/316034140_Learning_Deep_Context-Aware_Features_over_Body_and_Latent_Parts_for_Person_Re-identification. [16] HE Kaiming, ZHANG Xiangyu, REN Shaoqing. Deep Residual Learning for Image Recognition[C/OL]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2016-09-15)[2021-07-05]. https:∥arxiv.org/abs/1512.03385. [17] TENG Shangzhi, LIU Xiaobin, ZHANG Shiliang, et al. SCAN: Spatial and Channel Attention Network for Vehicle Re-Identification[C/OL]. Advances in Multimedia Information Processing-PCM 2018. (2017-07-25)[2021-07-05]. https:∥link.springer.com/chapter/10.1007/978-3-030-00764-5_32. [18] MALLAT S G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693. [19] WOO SANGHYUN, PARK JONGCHAN, LEE JOON-YOUNG, et al. CBAM: Convolutional Block Attention Module[C/OL]. 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2018-07-18)[2021-07-05]. https:∥arxiv.org/abs/1807.06521. [20] LIU Xinchen, LIU Wu, MEI Tao, et al. PROVID: Progressive and Multimodal Vehicle Reidentification for Large-Scale Urban Surveillance[J]. IEEE Transactions on Multimedia, 2017,20(3): 645-658. [21] HOU Jinhui, ZENG Huanqiang, CAI Lei, et al. Multi-label Learning with Multi-label Smoothing Regularization for Vehicle Re-Identification[J]. Neurocomputing, 2019, 345: 15-22. [22] PIRAZH KHORRAMSHAHI, AMIT KUMAR, PERI NEEHAR, et al. A Dual-Path Model with Adaptive Attention for Vehicle Re-Identification[C/OL]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). (2020-02-27)[2021-07-05]. https:∥ieeexplore.ieee.org/document/9010356/references#references. [23] ZHU Jianqing, ZENG Huanqing, HUANG Jingchang, et al. Vehicle Re-Identification Using Quadruple Directional Deep Learning Features[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 99:1-11. [24] ZHENG Aihua, LIN Xianmin, DONG Jiacheng, et al. Multi-Scale Attention Vehicle Re-Identification[J]. Neural Computing and Applications, 2020, 32(6): 17489-17503. [25] 邱铭凯,李熙莹.用于车辆重识别的基于细节感知的判别特征学习模型[J].中山大学学报(自然科学版),2021,60(4):111-120. [26] KUMA RATNESH, WEILL EDWIN, AGHDASI FARZIN, et al. Vehicle Re-Identification: An Efficient Baseline Using Triplet Embedding[C/OL]. 2019 International Joint Conference on Neural Networks (IJCNN). (2019-07-14)[2021-07-05]. https:∥sci-hub.se/10.1109/ijcnn.2019.8852059. [27] XU Yue, JIANG Na, ZHANG Lei, et al. Multi-Scale Vehicle Re-Identification Using Self-Adapting Label Smoothing Regularization[C/OL]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). (2019-04-17)[2021-07-05]. https:∥ieeexplore.ieee.org/document/8682599. [28] LOU YIHANG, BAI YAN, LIU JUN, et al. Embedding Adversarial Learning for Vehicle Re-Identification[J]. IEEE Trans Image Process, 2019, 28(8):3794-3807. |
[1] | AN Geng, YANG Fenlin, ZHOU Mengyuan, DOU Xinrui. Binocular Stereo Matching Algorithm Based on Improved Census Transform [J]. Journal of Jishou University(Natural Sciences Edition), 2023, 44(3): 29-33. |
[2] | LIN Kunhuang, LI Jianfeng, WANG Yang, LIU Zhijie, LIU Zheyu. Improved YOLOv4 Lung Nodule Detection Algorithm [J]. Journal of Jishou University(Natural Sciences Edition), 2023, 44(1): 24-29. |
[3] | ZHOU Mengyuan, YANG Fenlin. Shape Reconstruction Based on Polarization and Coarse Depth Images [J]. Journal of Jishou University(Natural Sciences Edition), 2022, 43(4): 20-26. |
[4] | SONG Tongzheng, DAI Houping, FENG Shuting, WEI Xuedan. Lattice Boltzmann Model for Solving Nonlinear Coupled Long and Short Wave Equations [J]. Journal of Jishou University(Natural Sciences Edition), 2022, 43(3): 7-14. |
[5] | HAN Xiaohua, YANG Fenlin. An Optimized NMG Solution to an Improved Total Variational Registration Model [J]. Journal of Jishou University(Natural Sciences Edition), 2021, 42(4): 44-49. |
[6] | WANG Wansheng, MO Ying, DENG Dandan, GUO Yonghong. Comparason of Copper Options Based on Two Mathematical Models [J]. Journal of Jishou University(Natural Sciences Edition), 2020, 41(3): 58-61. |
[7] | YIN Pengfei, WANG Guojun. Core-User-Group-Based Unbalanced Heat Conduction and Mass Diffusion Algorithm [J]. Journal of Jishou University(Natural Sciences Edition), 2019, 40(6): 9-16. |
[8] | WANG Qingqing. Application of Invariant Region of Reaction-Diffusion Equations [J]. Journal of Jishou University(Natural Sciences Edition), 2018, 39(2): 10-12. |
[9] | ZENG Linling. An Improved Double Color Digital Image Watermarking Algorithm Based on DWT-SVD [J]. Journal of Jishou University(Natural Sciences Edition), 2017, 38(5): 45-50. |
[10] | XIONG Lei, PENG Qing-Jing, YANG Li-Ping. Influential Factors on Nitrogen Migration and Transformation in Sedimen-Water Interface in the Dongjiang River [J]. journal6, 2015, 36(6): 62-68. |
[11] | WU You-Ping. Diffusion Law of Cement-Sodium Silicate Grout in Gravel Ground [J]. journal6, 2015, 36(5): 63-67. |
[12] | GUO Hai-Tao, XU Lei, ZHAO Hong-Ye, TIAN Yuan-Yuan, JIAO Sheng-Xi. Time-Frequency Spectrogram Segmentation Using the Multi-Scale Morphological Gradient and the Marked Watershed Algorithm [J]. journal6, 2015, 36(4): 12-17. |
[13] | GUAN De-Qing, LIAO Jun-Wen, WU Zhao. Structure Damage Identification Method by the Wavelet-Neural Network Analysis of Strain Mode [J]. journal6, 2015, 36(3): 45-51. |
[14] | SHU Ting, LIU Yao-Feng, DENG Bo, TAN Ya-Peng, CHEN Bing-Quan. Multi-scale Retinex Algorithm for the Foggy Image Enhancement Based on Sub-band Decomposition [J]. journal6, 2015, 36(1): 40-45. |
[15] | LIU Jun-Hua, LEI Chao-Yang. Gradient Image Fusion Algorithm Based on B-Spline [J]. journal6, 2012, 33(6): 61-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||