[1] DING X P,LUO C L.Perturbed Proximal Point Algorithms for Generalized Quasi-Variational-Like Inclusions [J].J. Comput. Appl. Math.,2000,210:153-165.[2] HUANG N J,FANG Y P.A New Class of General Variational Inclusions Involving maximal η-Monotone Mappings [J].Publ. Math. Debrecen,2003,62(1-2):83-98.[3] FANG Y P,HUANG N J.H-Monotone Operator and Resolvent Operator Technique for Variational Inclusions [J].Appl. Math. Comput.,2003,145:795-803. [4] FANG Y P,HUANG N J,THOMPSON H B.A New System of Variational Inclusions with (H,η)-Monotone Operators in Hilbert Spaces [J].Computers Math. Applic.,2005,49:365-374.[5] VERMA R U.A-Monotonicity and Applications to Nonlinear Variational Inclusions [J].J. of Appl. Math. and Stochastic Anal.,2004,17(2):193-195.[6] ZHANG Q B.Generalized Implicit Variational-Like Inclusion Problems Involving G-η-monotone Mappings [J].Appl. Math. Lett.,2007,20:216-221.[7] NADLER S B.Multivalued Contraction Mappings [J].Pacific J. Math.,1969,30:475-488.[8] JIN M M.Perturbed Proximal Point Algorithm for General Quasi-Variational Inclusions with Fuzzy Set-Valued Mappings [J].OR Transactions,2005,9(3):31-38.[9] AGARWAL R P,HUANG N J,CHO Y J.Generalized Nonlinear Mixed Implicit Qusai-Variational Inclusions [J].Appl. Math. Lett.,2000,13(6):19-24.[10] LI H G.Iterative Algorithm for A New Class of Generalized Nonlinear Fuzzy Set-Valude Variational Inclusions Involving (H,η)-Monotone Mappings [J].Advances in Nonl. Vari. Ineq.,2007,10(1):89-100.