吉首大学学报(自然科学版) ›› 2022, Vol. 43 ›› Issue (1): 26-30.DOI: 10.13438/j.cnki.jdzk.2022.01.005

• 数学 • 上一篇    下一篇

凹角区域泊松方程边值问题的CEFE与NBE耦合法求解

朱双彪   

  1. (南京财经大学应用数学学院,江苏 南京 210023)
  • 出版日期:2022-01-25 发布日期:2022-05-16
  • 作者简介:朱双彪(1998—),男,江苏南通人,南京财经大学应用数学学院硕士研究生,主要从事偏微分方程数值解法研究.
  • 基金资助:
    江苏省高校自然科学研究面上项目(14KJB110007)

CEFE and NBE Coupling Method for Solving Boundary Value Problems of Poisson Equation in Concave Corner Region

ZHU Shuangbiao   

  1. (School of Applied Mathematics,Nanjing University of Finance & Economics,Nanjing 210023,China)
  • Online:2022-01-25 Published:2022-05-16

摘要:基于自然边界归化原理,给出了曲边有限元与自然边界元耦合法.利用耦合法求解凹角区域上泊松方程的边值问题,得到了近似解的误差估计和收敛性.数值实例验证了耦合法的优越性.

关键词: 泊松方程, 曲边有限元, 自然边界元, 耦合法, 凹角区域, 收敛性, 误差估计

Abstract: Based on the principle of natural boundary reduction,the coupling method of curved edge finite element and natural boundary element is given.The coupling method is used to solve the boundary value problem of Poisson equation in concave region,and the error estimation and convergence of the approximate solution of the coupling method are obtained.Numerical examples verify the superiority of the coupling method.

Key words: Poisson equation, curved edge finite element, natural boundary element, coupling method, concave area, convergence, error estimation

公众号 电子书橱 超星期刊 手机浏览 在线QQ