[1] AUSLENDER ALFRED, TEBOULLE MARC. Asymptotic Cones and Functions in Optimization and Variational Inequalities[M]. New York: Springer-Verlag, 2003: 157-165.
[2] AUSLENDER ALFRED. Existence of Optimal Solutions and Duality Results Under Weak Conditions[J]. Mathematical Programming, 2000, 88(1): 45-59.
[3] BAN Liqun, SONG Wen. Duality Gap of the Conic Convex Constrained Optimization Problems in Normed Spaces[J]. Mathematical Programming, 2009, 119(2): 195-214.
[4] FANG Donghui, LI Chong, NG K F. Constraint Qualifications for Extended Farkas's Lemmas and Lagrangian Dualities in Convex Infinite Programming[J]. SIAM Journal on Optimization, 2010, 20(3): 1 311-1 332.
[5] JEYAKUMAR V, LI Guoyin. New Dual Constraint Qualifications Characterizing Zero Duality Gaps of Convex Programs and Semidefinite Programs[J]. Nonlinear Analysis Theory Methods & Applications, 2009, 71(12): 2 239-2 249.
[6] JEYAKUMAR V, WOLKOWICZ H. Zero Duality Gaps in Infinite-Dimensional Programming[J]. Journal of Optimization Theory and Applications, 1990, 67(1): 87-108.
[7] LI Chong, NG K F, PONG T K. Constraint Qualifications for Convex Inequality Systems with Applications in Constrained Optimization[J]. SIAM Journal on Optimization, 2010, 19(1): 163-187.
[8] LI Guoyin, JEYAKUMAR V, LEE G M. Robust Conjugate Duality for Convex Optimization Under Uncertainty with Application to Data Classification [J]. Nonlinear Analysis Theory Methods & Applications, 2011,74(6): 2 327-2 341.
[9] FANG Donghui, LI Chong, YAO JEN-CHIH. Stable Lagrange Dualities for Robust Conical Programming[J]. Journal Nonlinear and Convex Analysis, 2015, 10(16): 2141-2158.
[10] ZALINESCU C. Convex Analysis in General Vector Spaces[M]. New Jersey: World Scientific, 2002: 75-135.
[11] BOT RADU IOAN, WANKA GERT. A Weaker Regularity Condition for Subdifferential Calculus and Fenchel Duality in Infinite Dimensional Spaces[J]. Nonlinear Analysis Theory, Methods & Applications, 2006,64(12): 2 787-2 804. |