[1] VOS T, ABAJOBIR A A, ABATE K H, et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 328 Diseases and Injuries for 195 Countries, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016[J]. The Lancet, 2017, 390(10100): 1211-1259.
[2] TUNG YI-JUNG, LO KENNETH K H, HO ROGER C M, et al. Prevalence of Depression Among Nursing Students: A Systematic Review and Meta-Analysis[J]. Nurse Education Today, 2018, 63: 119-129.
[3] XU Dandan, RAO Wenwang, CAO Xiaolan, et al. Prevalence of Depressive Symptoms in Primary School Students in China: A Systematic Review and Meta-Analysis[J]. Journal of Affective Disorders, 2020, 268: 20-27.
[4] MALHI G S, MANN J J. Depression[J]. The Lancet, 2018, 392(24): 2299-2312.
[5] KELLY J R, CLARKE G, CRYAN J F, et al. Brain-Gut-Microbiota Axis: Challenges for Translation in Psychiatry[J]. Annals of Epidemiology, 2016, 26(5): 366-372.
[6] GLENWRIGHT A J, POTHULA K R, BHAMIDIMARRI S P, et al. Structural Basis for Nutrient Acquisition by Dominant Members of the Human Gut Microbiota[J]. Nature, 2017, 541(7637): 407-411.
[7] VANDANA U K, BARLASKAR N H, GULZAR A B M, et al. Linking Gut Microbiota with the Human Diseases[J]. Bioinformation, 2020, 16(2): 196-208.
[8] JIA Qiujin, LI Hao, ZHOU Huan, et al. Role and Effective Therapeutic Target of Gut Microbiota in Heart Failure[J]. Cardiovascular Therapeutics, 2019: 5164298.
[9] ROBLES A V, GUARNER F. Linking the Gut Microbiota to Human Health[J]. British Journal of Nutrition, 2013, 109(S2): S21-S26.
[10] BROWN J M, HAZEN S L. The Gut Microbial Endocrine Organ: Bacterially Derived Signals Driving Cardiometabolic Diseases[J]. Annual Review of Medicine, 2015, 66(1): 343-359.
[11] DE OLIVEIRA G L V, LEITE A Z, HIGUCHI B S, et al. Intestinal Dysbiosis and Probiotic Applications in Autoimmune Diseases[J]. Immunology, 2017, 152(1): 1-12.
[12] RHEE S H, POTHOULAKIS C, MAYER E A. Principles and Clinical Implications of the Brain-Gut-Enteric Microbiota Axis[J]. Nature Reviews Gastroenterology & Hepatology, 2009, 6(5): 306-314.
[13] BIENENSTOCK J, COLLINS S. 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Psycho-Neuroimmunology and the Intestinal Microbiota: Clinical Observations and Basic Mechanisms[J]. Clinical & Experimental Immunology, 2010, 160(1): 85-91.
[14] ZHU Weifei, GREGORY J C, ORG E, et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk[J]. Cell, 2016, 165(1): 111-124.
[15] SCHOKKER D, FLEDDERUS J, JANSEN R, et al. Supplementation of Fructooligosaccharides to Suckling Piglets Affects Intestinal Microbiota Colonization and Immune Development[J]. Journal of Animal Science, 2018, 96(6): 2139-2153.
[16] ADIBFAR A, SALEEM M, LANCTOT K L, et al. Potential Biomarkers for Depression Associated with Coronary Artery Disease: A Critical Review[J]. Current Molecular Medicine, 2016, 16(2): 137-164.
[17] VOGELZANGS N, BEEKMAN A T F, MILANESCHI Y, et al. Urinary Cortisol and Six-Year Risk of All-Cause and Cardiovascular Mortality[J]. The Journal of Clinical Endocrinology & Metabolism, 2010, 95(11): 4959-4964.
[18] O'MAHONYS M, MARCHESIJ R, SCULLYP, et al. Early Life Stress Alters Behavior, Immunity, and Microbiota in Rats: Implications for Irritable Bowel Syndrome and Psychiatric Illnesses[J]. Biological Psychiatry, 2009, 65(3): 263-267.
[19] THEOHARIDES T C, ASADI S, PATELA B. Focal Brain Inflammation and Autism[J]. Journal of Neuroinflammation, 2013, 10(1): 46-52.
[20] BERCIK P, COLLINS S M. The Effects of Inflammation, Infection and Antibiotics on the Microbiota-Gut-Brain Axis[J]. Advances in Experimental Medicine and Biology, 2014, 817: 279-289.
[21] KHANDAKER G M, PEARSON R M, ZAMMIT S, et al. Association of Serum Interleukin 6 and C-Reactive Protein in Childhood with Depression and Psychosis in Young Adult Life[J]. JAMA Psychiatry, 2014, 71(10): 1121-1128.
[22] AIT-BELGNAOUI A, DURAND H, CARTIER C, et al. Prevention of Gut Leakiness by a Probiotic Treatment Leads to Attenuated HPA Response to an Acute Psychological Stress in Rats[J]. Psychoneuroendocrinology, 2012, 37(11): 1885-1895.
[23] LUNA R A, FOSTER J A. Gut Brain Axis: Diet Microbiota Interactions and Implications for Modulation of Anxiety and Depression[J]. Current Opinion in Biotechnology, 2015, 32: 35-41.
[24] LI Yunwei, ZHONG Xiaoming, CHENG Guanchang, et al. Hs-CRP and All-Cause, Cardiovascular, and Cancer Mortality Risk: A Meta-Analysis[J]. Atherosclerosis, 2017, 259: 75-82.
[25] FETISSOV S O. Role of the Gut Microbiota in Host Appetite Control: Bacterial Growth to Animal Feeding Behaviour[J]. Nature Reviews Endocrinology, 2017, 13(1): 11-25.
[26] BARRETTE, ROSSRP, O'TOOLEPW, et al. γ-Aminobutyric Acid Production by Culturable Bacteria from the Human Intestine[J]. Journal of Applied Microbiology, 2012, 113(2): 411-417.
[27] BRAVO J A, FORSYTHE P, CHEW M V, et al. Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve[J]. Proceedings of the National Academy of Sciences, 2011, 108(38): 16050-16055.
[28] 刘梅颜,刘舰洋,张丽军.骨髓源间充质干细胞治疗双心疾病的可行性分析[J].中华内科杂志,2019,58(12):924-928.
[29] LIANG S, WANG T, HU X, et al. Administration of Lactobacillus Helveticus NS8 Improves Behavioral, Cognitive, and Biochemical Aberrations Caused by Chronic Restraint Stress[J]. Neuroscience, 2015, 310: 561-577.
[30] SUBEDI L, HUANG Hong, PANT A, et al. Plasma Brain-Derived Neurotrophic Factor Levels in Newborn Infants with Neonatal Abstinence Syndrome[J]. Frontiers in Pediatrics, 2017, 5: 238-244.
[31] PREMYSL B, EMMANUEL D, JOSH C, et al. The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice[J]. Gastroenterology, 2011, 141(2): 599-609.
[32] MCCAFFERY J M, DUANQingling, FRASURE-SMITH N, et al. Genetic Predictors of Depressive Symptoms in Cardiac Patients[J]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B(3): 381-388.
[33] ROMANO K A, VIVAS E I, AMADOR-NOGUEZ D, et al. Intestinal Microbiota Composition Modulates Choline Bioavailability from Diet and Accumulation of the Proatherogenic Metabolite Trimethylamine-N-Oxide[J]. Mbio, 2015, 6(2): e02481-14.
[34] TANG WH W, KITAI T, HAZEN S L. Gut Microbiota in Cardiovascular Health and Disease[J]. Circulation Research, 2017, 120(7): 1183-1196.
[35] NAGATOMO Y, TANG W H W. Intersections Between Microbiome and Heart Failure: Revisiting the Gut Hypothesis[J]. Journal of Cardiac Failure, 2015, 21(12): 973-980.
[36] PASINIE, AQUILANIR, TESTAC, et al. Pathogenic Gut Flora in Patients with Chronic Heart Failure[J]. JACC: Heart Failure, 2016, 4(3): 220-227.
[37] SANDEK A, SWIDSINSKI A, SCHROEDL W, et al. Intestinal Blood Flow in Patients with Chronic Heart Failure: A Link with Bacterial Growth, Gastrointestinal Symptoms, and Cachexia[J]. Journal of the American College of Cardiology, 2014, 64(11): 1092-1102.
[38] NEVES A L, COELHO J, COUTO L, et al. Metabolic Endotoxemia: A Molecular Link Between Obesity and Cardiovascular Risk[J]. Journal of Molecular Endocrinology, 2013, 51(2): R51-R64.
[39] TRSEID M, UELAND T, HOV J R, et al. Microbiota-Dependent Metabolite Trimethylamine-N-Oxide is Associated with Disease Severity and Survival of Patients with Chronic Heart Failure[J]. Journal of Internal Medicine, 2015, 277(6): 717-726.
[40] HEIANZA Y, MA Wenjie, MANSON J E, et al. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies[J]. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, 2017, 6(7): e004947.
[41] SUZUKI T, YAZAKIY, VOORSA A, et al. Association with Outcomes and Response to Treatment of Trimethylamine N-Oxide in Heart Failure: Results from BIOSTAT-CHF[J]. European Journal of Heart Failure, 2019, 21(7): 877-886.
[42] SOLAK Y, AFSAR B, VAZIRI ND, et al. Hypertension as an Autoimmune and Inflammatory Disease[J]. Hypertension Research, 2016, 39(8): 567-573.
[43] KARBACH S H, SCHNFELDER T, BRANDO I, et al. Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction[J]. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, 2016, 5(9): e003698.
[44] QI Yanfei, ARANDA J M, RODRIGUEZ V, et al. Impact of Antibiotics on Arterial Blood Pressure in a Patient with Resistant Hypertension—A Case Report[J]. International Journal of Cardiology, 2015, 201: 157-158.
[45] ZAMPARELLI M S, COMPARE D, COCCOLI P, et al. The Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and Cardiovascular Disease[J]. International Journal of Molecular Sciences, 2016, 17(8): 1225-1235.
[46] CHIOU V L, BUROTTO M. Pseudoprogression and Immune-Related Response in Solid Tumors[J]. Journal of Clinical Oncology, 2015, 33(31): 3541-3543.
[47] GEORGE S, MOTZER R J, HAMMERS H J, et al. Safety and Efficacy of Nivolumab in Patients with Metastatic Renal Cell Carcinoma Treated Beyond Progression: A Subgroup Analysis of a Randomized Clinical Trial[J]. JAMA Oncology, 2016, 2(9): 1179-1186.
[48] 赵乐恒,吕昌龙,孙洪涛.肠道菌群和黏膜免疫与心血管疾病关系研究新进展[J].中国免疫学杂志,2018,34(9):1433-1436;1441.
[49] CURTISS L K, TOBIAS P S. Emerging Role of Toll-Like Receptors in Atherosclerosis[J]. The Journal of Lipid Research, 2008, 50(Suppl 1): S340-S345.
[50] WANG Zeneng, KLIPFELL E, BENNETTB J, et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease[J]. Nature, 2011, 472(7341): 57-63.
[51] KOREN O, SPOR A, FELIN J, et al. Human Oral, Gut, and Plaque Microbiota in Patients with Atherosclerosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl 1): 4592-4598.
[52] LE CHATELIER E, NIELSEN T, QIN Junjie, et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers[J]. Nature, 2013, 500(7464): 541-546.
[53] ZHAO Liping. The Gut Microbiota and Obesity: From Correlation to Causality[J]. Nature Reviews Microbiology, 2013, 11(9): 639-647.
[54] CANI P D, BIBILONI R, KNAUF C, et al. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice[J]. Diabetes, 2008, 57(6): 1470-1481.
[55] QIN Junjie, LI Yingrui, CAI Zhiming, et al. A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes[J]. Nature, 2012, 490(7418): 55-60.
[56] KARLSSON F H, TREMAROLI V, NOOKAEW I, et al. Gut Metagenome in European Women with Normal, Impaired and Diabetic Glucose Control[J]. Nature, 2013, 498(7452): 99-103.
[57] ANDREASENA S, LARSENN, PEDERSEN-SKOVSGAARDT, et al. Effects of Lactobacillus Acidophilus NCFM on Insulin Sensitivity and the Systemic Inflammatory Response in Human Subjects[J]. British Journal of Nutrition, 2010, 104(12): 1831-1838.
[58] VRIEZE A, NOOD E V, HOLLEMAN F, et al. Transfer of Intestinal Microbiota from Lean Donors Increases Insulin Sensitivity in Individuals with Metabolic Syndrome[J]. Gastroenterology, 2012, 143(4): 913-916.
[59] RYAN K K, TREMAROLI V, CLEMMENSEN C, et al. FXR is a Molecular Target for the Effects of Vertical Sleeve Gastrectomy[J]. Nature, 2014, 509(7499): 183-188.
[60] WARRIER M, SHIHD M, BURROWSA C, et al. The TMAO-Generating Enzyme Flavin Monooxygenase 3 is a Central Regulator of Cholesterol Balance[J]. Cell Reports, 2015, 10(3): 326-338.
[61] 李超,崔立红.高脂血症、高脂饮食与肠道菌群的关系[J].世界华人消化杂志,2013,21(14):1273-1277.
[62] FU Jingyuan, BONDER M J, CENIT M C, et al. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids[J]. Circulation Research, 2015, 117(9): 817-824.
|