[1] FANG Kaitai,LIU Minqian,QIN Hong,et al.Theory and Application of Uniform Experimental Designs (Vol.221)[M].Singapore:Springer,2018:243-257.
[2] 胡柳平,裴武,周昱,等.五水平U型设计在可卷型L2-偏差下的新下界[J].吉首大学学报(自然科学版),2022,43(4):7-10.
[3] CHEN Hegang,CHENG CHING-SHUI.Doubling and Projection:A Method of Constructing Two-Level Designs of Resolution Ⅳ[J].Annals of Statistics,2006,34:546-558.
[4] XU Hongquan,CHENG CHING-SHUI.A Complementary Design Theory for Doubling[J].Annals of Statistics,2008,36(1):445-457.
[5] LEI Yiju,QIN Hong.Uniformity in Double Designs[J].Acta Mathematicae Applicatae Sinica:English Series,2014,30(3):773-780.
[6] OU Zujun,QIN Hong.Analytic Connections Between a Double Design and Its Original Design in Terms of Different Optimality Criteria[J].Communications in Statistics-Theory and Methods,2017,46(15):7630-7641.
[7] 邹娜,勾廷勋,覃红.多水平试验设计中的广义Double方法[J].应用数学学报,2021,44(6):856-868.
[8] 张诗娴,田杰中,柏启明,等.二水平最优列扩展设计的构造及性质[J].吉首大学学报(自然科学版),2023,44(3):1-7.
[9] QIN Hong.Characterization of Generalized Aberration of Some Designs in Terms of Their Complementary Designs[J].Journal of Statistical Planning and Inference,2003,117(1):141-151.
[10] 宋硕.最小低阶投影均匀性在补充设计中的应用[D].武汉:华中师范大学,2006:11-15.
[11] 李洪毅,欧祖军.互补设计在Lee偏差下的均匀性[J].华中师范大学学报(自然科学版),2011,45(1):1-5.
[12] HE Yuanzhen,AI Mingyao.Complementary Design Theory for Sliced Equidistance Designs[J].Statistics and Probability Letters,2012,82(3):542-547.
[13] 邹娜,蔡艳丽,仵思融.基于补设计方法的均匀设计构造[J].统计与决策,2019,35(15):18-21.
[14] 黄兴友,薛慧丽,李洪毅.基于tripling的补设计的性质研究[J].东北师大学报(自然科学版),2022,54(3):25-30.
[15] XU Hongquan,WU C F JEFF.Generalized Minimum Aberration for Asymmetrical Fractional Factorial Designs[J].Annals of Statistics,2001,29:1066-1077.
[16] CHATTERJEE KASHINATH,LI Zhaohai,QIN Hong.Some New Lower Bounds to Centered and Wrap-Round L2-Discrepancies[J].Statistics and Probability Letters,2012,82(7):1367-1373.
|