[1] 马跃超,李欢.观测器基于自适应滑模控制的半马尔科夫跳变系统[J].自动化与仪器仪表,2021(2):9-16.
[2] 高萌.半马尔科夫跳变T-S模糊系统的控制问题[D].曲阜:曲阜师范大学,2020.
[3] MA Xiang,ZHANG Yueyuan,HUANG Jun.Reachable Set Estimation and Synthesis for Semi-Markov Jump Systems[J].Information Sciences,2022,609:376-386.
[4] 龙少华,周丽娟.一类带有多时滞的中立型奇异马尔科夫跳变系统的随机稳定性研究[J].科学技术创新,2022(8):22-25.
[5] 吕涛,张习盼,沈长春.中立型半马尔科夫跳跃系统的可达集边界估计[J].动力系统与控制,2021,10(4):199-210.
[6] TAN Guoqiang,WANG Zhanshan.Reachable Set Estimation of Delayed Markovian Jump Neural Networks Based on an Improved Reciprocally Convex Inequality[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(6):2637-2642 .
[7] ZHANG Xianming,HAN Qinglong,SEURET ALECANDRE,et al.An Improved Reciprocally Convex Inequality and an Augmented Lyapunov-Krasovskii Functional for Stability of Linear Systems with Time-Varying Delay[J].Automatica,2017,84:221-226.
[8] HOU Zhenting,LUO Jiaowan,SHI Peng,et al.Stochastic Stability of Ito Differential Equations with Semi-Markovian Jump Parameters[J].IEEE Tansactions on Automatic Control,2006,51(8):1383-1387.
[9] HUANG Haomiao,GABRIEL HOFFMANN,TOMLIN CLAIRE,et al.Applications of Hybrid Reachability Analysis to Robotic Aerial Vehicles[J].The International Journal of Robotics Research,2011,30(3):330-304.
[10] XIAO Hanni,ZHU Quanxin,KARIMI HAMIDREZA.Stability Analysis of Semi-Markov Switching Stochastic Mode-Dependent Delay Systems with Unstable Subsystems[J].Chaos,Solitons & Fractals,2022,165:112691.DOI:10.1016/j.chaos.2022.112691.
[11] FENG Zhiguang,ZHENG Weixin.On Reachable Set Estimation of Delay Markovian Jump Systems with Partially Known Transition Probabilities[J].Journal of the Franklin Institute,2016,303(15):3830-3856.
[12] ZUO Zhiqiang,HE Wei,WANG Yijing.Reachable Set Bounding for Delayed Systems with Polytopic Uncertainties:The Maximal Lyapunov-Krasovskii Functional Approach[J].Automatica,2010,46(5):949-952.
[13] KANG Wei,ZHONG Shouming,SHI Kaibo.Triple Integral Approach to Reachable Set Bounding for Linear Singular Systems with Time-Varying Delay[J].Mathematical Methods in the Applied Sciences,2017,40(8):3049-3060.
[14] ZHANG Xudong,ZHANG Liang,ZHAO Xudong,et al.Reachable Set Control for Singular Systems with Disturbance via Sliding Mode Control[J].Journal of the Franklin Institute,2023,360(4):3307-3330.
[15] HOU Zhenting,LUO Jiaowan,SHI Peng.Stochastic Stability of Linear Systems with Semi-Markovian Jump Parameters[J].The ANZIAM Journal,2005,46(3):331-300.
[16] LI Zhicheng,LI Ming,XU Yinliang,et al.Finite-Time Stability and Stabilization of Semi-Markovian Jump Systems with Time Delay[J].International Journal of Robust and Nonlinear Control,2018,30(6):2064-2081.
[17] ZHANG Min,HUANG Jun,ZHANG Yueyuan.Stochastic Stability and Stabilization for Stochastic Differential Semi-Markov Jump Systems with Incremental Quadratic Constraints[J].International Journal of Robust and Nonlinear Control,2021,31(14):6788-6809.
[18] JIANG Xiangli,XIA Guihua,FENG Zhiguang,et al.Reachable Set Estimation for Neutral Markovian Jump Systems with Mode-Dependent Time-Varying Delays[J].Optimal Control Applications and Methods,2021,42(1):195-215.
[19] CHENG Guifang,LIU Hao.Asynchronous Finite-Time H∞ Filtering for Linear Neutral Semi-Markovian Jumping Systems Under Hybrid Cyber-Attacks[J].Journal of the Franklin Institute,2023,360(3):1495-1522.
[20] SHEN Changchun,ZHONG Shouming.The Ellipsoidal Bound of Reachable Sets for Linear Neutral Systems with Disturbances[J].Journal of the Franklin Institute,2011,308(9):2570-2585.
[21] ZHANG Liang,NIUC BEN,ZHAO Ning,et al.Reachable Set Estimation of Singular Semi-Markov Jump Systems[J].Journal of the Franklin Institute,2023,360(16):12530-12551.
[22] ZOU Zhiqiang,WANG Yijing,HE Wei.Reachable Set Bounding for Delayed Systems Polytopic Uncertainties:The Maximal Lyapunov-Krasovskii Functional Approach[J].Automatica 2010,46(5):949-952.
[23] TIAN Junkang,XIONG Lianglin,LIU Jianxiang,et al.Novel Delay-Dependent Robust Stability Criteria for Uncertain Neutral Systems with Time-Varying Delay[J].Chaos,Solitons & Fractals,2009,40(4):1858-1866.
[24] ZUO Zongyu,WANG Yannan.New Stability Criterion for a Class of Linear Systems with Time-Varying Delay and Nonlinear Perturbations[J].IEE Proceedings-Control Theory and Applications,2006,153(5):623-626.
|