[1] DJORDJEVIC V D,REDEKOPP L G.On Two-Dimensional Packets of Capillary-Gravity Waves[J].Journal of Fluid Mechanics,1977,79(4):703-714.
[2] LIU Zeting,LU Shujuan.Hermite Pesudospectral Method and Modified Hermite Spectral Method for Long-Short Wave Equations[J].Nonlinear Sciences and Applications 2017,10(4):1487-1511.
[3] 蒋佳平,王廷春.短波方程的两个守恒型紧致有限差分格式[J].工程数学学报,2020,37(1):43-55.
[4] CHANG Qianshun,WONG YAU-SHU,LIN CHI-KUN.Numerical Computations for Long-Wave Short-Wave Interaction Equations in Semi-Classical Limit[J].Journal of Computational Physics,2008,227(19):8489-8507.
[5] 王兰,段雅丽.长短波方程的高阶紧致格式[J].应用数学与计算数学学报,2015,29(3):295-304.
[6] 赖惠林.几类非线性波方程的格子玻尔兹曼模型的数值分析及模拟[D].福州:福建师范大学,2012:4.
[7] 何雅玲,王勇,李庆.格子Boltzmann方法的理论和应用[M].北京:科学出版社,2009:1.
[8] 郭照立,郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社,2008:10.
[9] ZHANG Jiangying,YAN Guangwu.A Lattice Boltzmann Model for the Korteweg-de Vries Equation with Two Conservation Laws[J].Computer Physics Communications.2009,180(7):1054-1062.
[10] CHAI Zhenhua,SHI Baochang,GUO Zhaoli.A Multiple-Relaxation-Time Lattice Boltzmann Model for General Nonlinear Anisotropic Convection-Difusion Equations[J].Journal Scientific Computing,2016,69(1):355-390.
[11] LAI Huilin,MA Changfeng.Lattice Boltzmann Model for Generalized Nonlinear Wave Equations[J].Physical Review.E,Statistical,Nonlinear,and Soft Matter Physics,2011,84(4 Pt 2):046708.DOI:10.1103/PhysRevE.84.046708.
[12] BENNEY D J.A General Theory for Interactions Between Short and Long Waves [J].Studies in Applied Mathematics,1977,56(1):81-94.
[13] GUO Zhaoli,ZHENG Chuguang,SHI Baochang.Non-Equilibrium Extrapolation Method for Velocity and Pressure Boundary Conditions in the Lattice Boltzmann Method[J].Chinese Physics,2002,11(4):366-374.
|