[1] FANG Kaitai, WANG Yuan. Number-Theoretic Methods in Statistics[M]. London: Chapman and Hall, 1994: 200-246.
[2] HICKERNELLFRED J. A Generalized Discrepancy and Quadrature Error Bound[J]. Mathematics of Computation, 1998, 67(221): 299-322.
[3] HICKERNELL FRED J. How Well Do They Measure Up? [M]∥ HELLEKALEK PETER, LARCHER GERHARD. Random and Quasi-Random Point Sets, Lecture Notes in Statistics. New York: Spinger, 1998: 109-166.
[4] ZHOU Yongdao, NING Jianhui, SONG Xiebing. Lee Discrepancy and Its Applications in Experimental Designs[J]. Statistics and Probability Letters, 2008, 78(13): 1933-1942.
[5] HICKERNELL FRED J, LIU Minqian. Uniform Designs Limit Aliasing[J]. Biometrika, 2002, 89(4): 893-904.
[6] ZHOU Yongdao, FANG Kaitai, NING Jianhui. Mixture Discrepancy for Quasi-Random Point Sets[J]. Journal of Complexity, 2013, 29(3/4): 283-301.
[7] FANG Kaitai, MA Changxing, MUKERJEE RAHULA. Lattice Rules: Uniformity in Fractional Factorials[M]∥ FANG Kaitai, HICKERNELL FRED J, NIEDERREITER HARAL. Monte Carlo and Quasi-Monte Carlo Methods 2000. Berlin: Springer-Verlag, 2002: 123-138.
[8] FANG Kaitai, LU Xuan, WINKER PETER. Lower Bounds for Centered and Wrap-Around L2-Discrepancy and Construction of Uniform Designs by Threshold Accepting[J]. Journal of Complexity, 2003, 19(5): 692-711.
[9] QIN Hong, ZHANG Shangli, FANG Kaitai. Constructing Uniform Design with Two or Three-Level[J]. Acta Mathematica Scientia, 2006, 26(3): 451-459.
[10] CHATTERJEE KASHINATH, LI Zhaohai, QIN Hong. Some New Lower Bounds to Centered and Wrap-Around L2-Discrep-Ancies[J]. Statistics and Probability Letters, 2012, 82(7): 1367-1373.
[11] CHATTERJEE KASHINATH, FANG Kaitai, QIN Hong. Uniformity in Factorial Designs with Mixed Levels[J]. Journal of Statistical Planning and Inference, 2005, 128(2): 593-607.
[12] ZHOU Yongdao, NING Jianhui. Lower Bounds of Wrap-Around L2-Discrepancy and Relationships Between MLHD and Uniform Design with a Large Size[J]. Journal of Statistical Planning and Inference, 2008, 138(8): 2330- 2339.
[13] ZHANG Qionghui, WANG Zhenghong, HU Jianwei, et al. A New Lower Bound for Wrap-Around L2-Discrepancy on Two and Three Mixed Level Factorials[J]. Statistics and Probability Letters, 2015, 96: 133-140.
[14] 雷轶菊.2和4混水平U-型设计在可卷型L2-偏差下的下界[J].北京教育学院学报(自然科学版),2016,11(1):1-4.
[15] HU Liuping, CHATTERJEE KASHINATH, LIU Jiaqi, et al. New Lower Bound for Lee Discrepancy of Asymmetrical Factorials[J]. Statistical Papers, 2020, 61(4): 1763-1772.
|