journal6 ›› 2008, Vol. 29 ›› Issue (2): 25-26.
• 数学 • 上一篇 下一篇
出版日期:
发布日期:
作者简介:
Online:
Published:
摘要:令S为Polish空间,M1(S)为其上所有的概率构成的空间,赋予M1(S)弱拓扑.设{Xn}n≥1为一列M1(S)列值的随机变量,{μn}n≥1为相应的一阶矩测度序列,那么当n→∞时,若{μn}n≥1在S上是指数胎紧的,则{Xn}n≥1在M1(S)上是指数胎紧的.此外,当S局部紧时,如下的度量诱导出M1(S)上的弱拓扑:d(μ,μ-)=supf∈F|μ(f)-μ-(f)|,u,u∈M1(S).其中F是S上α-Hlder范数不超过某正常数的有界函数全体,α∈(0,1].
关键词: 指数胎紧, 一阶矩测度, 弱拓扑, HOlder连续
Abstract: Assume S is a Polish space and M1(s) the space of all probabilities on it.Endow M1(s) with the weak topology.Let {Xn}n≥1 be a sequence of random variables M1(s)-valued and {μn}n≥1 its first moment measure sequence.Then {Xn}n≥1 is exponentially tight on M1(s) provided so is {μn}n≥1 on S.Moreover,when S is locally compact,the weak topology on M1(s) can be induced by the following metric:d(μ,μ-)=supf∈F|μ(f)-μ(f)|μ,μ-∈M1(S),where,F is the set of bounded continuous functions on S with α-Hlder norm is uniformly bounded by a C>0,and α∈(0,1].
Key words: exponentially tight, first moment measure, weak topology, Hlder continuous
方涛. Polish空间上的概率测度所构成的空间[J]. journal6, 2008, 29(2): 25-26.
FANG Tao. On Spaces of All Probabilities on Polish Spaces[J]. journal6, 2008, 29(2): 25-26.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: https://zkxb.jsu.edu.cn/CN/
https://zkxb.jsu.edu.cn/CN/Y2008/V29/I2/25