journal6 ›› 2008, Vol. 29 ›› Issue (2): 25-26.

• 数学 • 上一篇    下一篇

Polish空间上的概率测度所构成的空间

  

  1. (湖南财经高等专科学校,湖南 长沙 410205)
  • 出版日期:2008-03-25 发布日期:2012-05-25
  • 作者简介:方涛(1961-),男,湖南临湘人,湖南财经高等专科学校副教授,主要从事数学教育与函数论研究.

On Spaces of All Probabilities on Polish Spaces

  1. (Hunan Financial and Economic College,Changsha 410205,China)
  • Online:2008-03-25 Published:2012-05-25

摘要:令S为Polish空间,M1(S)为其上所有的概率构成的空间,赋予M1(S)弱拓扑.设{Xn}n≥1为一列M1(S)列值的随机变量,{μn}n≥1为相应的一阶矩测度序列,那么当n→∞时,若{μn}n≥1在S上是指数胎紧的,则{Xn}n≥1在M1(S)上是指数胎紧的.此外,当S局部紧时,如下的度量诱导出M1(S)上的弱拓扑:d(μ,μ-)=supf∈F|μ(f)-μ-(f)|,u,u∈M1(S).其中F是S上α-Hlder范数不超过某正常数的有界函数全体,α∈(0,1].

关键词: 指数胎紧, 一阶矩测度, 弱拓扑, HOlder连续

Abstract: Assume S is a Polish space and M1(s) the space of all probabilities on it.Endow M1(s) with the weak topology.Let {Xn}n≥1 be a sequence of random variables M1(s)-valued and {μn}n≥1 its first moment measure sequence.Then {Xn}n≥1 is exponentially tight on M1(s) provided so is {μn}n≥1 on S.Moreover,when S is locally compact,the weak topology on M1(s) can be induced by the following metric:d(μ,μ-)=supf∈F|μ(f)-μ(f)|μ,μ-∈M1(S),where,F is the set of bounded continuous functions on S with α-Hlder norm is uniformly bounded by a C>0,and α∈(0,1].

Key words: exponentially tight, first moment measure, weak topology, Hlder continuous

公众号 电子书橱 超星期刊 手机浏览 在线QQ