journal6 ›› 2008, Vol. 29 ›› Issue (4): 30-34.

• 数学 • 上一篇    下一篇

时滞神经网络的指数稳定性分析

  

  1. (重庆师范大学数学与计算机科学学院,重庆 400047)
  • 出版日期:2008-07-25 发布日期:2012-05-21

Exponential Stability of Neural Networks with Time Delays

  1. (Department of Mathematics and Computer Science,Chongqing Normal University,Chongqing 400047,China)
  • Online:2008-07-25 Published:2012-05-21
  • About author:YANG De-gang (1976-),male,was born in Zigong City,Sichuan Province,associate professor of Chongqing Normal University;research areas are neural networks,nonlinear dynamical systems and network security.
  • Supported by:

    Supported by the NSFC (60573047);Natural Science Foundation Project of CQ CSTC (2006BB2254,2007BB2231);Applying Basic Research Program of Chongqing Education Committee (KJ060818);Doctoral Foundation Project of Chongqing Normal University (08XLB003)

摘要:研究了一类时滞细胞神经网络的指数稳定性问题,利用Razumikhin定理和线性不等式技术得到新的全局指数稳定性准则.与其他方法不同之处在于,对神经网络模型的“线性化”,将神经网络模型变成一个线性时变的系统.所获的条件具有较少的保守性.最后用1个数值例子说明文中所得的结果是有效的.

关键词: 神经网络, 时滞, 指数稳定性, 线性矩阵不等式, Razumikhin定理

Abstract: This paper considers the problems of global exponential stability for a general class of neural networks with time delays,a new criterion ensuring global exponential stability is obtained by utilizing Razumikhin theorem and the linear matrix inequality (LMI) technique.Distinct difference from other analytical approaches lies in “linearization” of the neural network model,by which the considered neural network model is transformed into a linear time-variant system.The obtained conditions show to be less conservative and restrictive.A numerical simulation is given to illustrate the validity of our results.

Key words: neural networks, time delays, exponential stability, linear matrix inequality, Razumikhin theorem

公众号 电子书橱 超星期刊 手机浏览 在线QQ