journal6 ›› 2009, Vol. 30 ›› Issue (6): 35-39.

• 计算机 • 上一篇    下一篇

基于支持向量机的混沌时间序列预测

  

  1. (1.湖南农业大学东方科技学院,湖南 长沙 410128;2.湖南农业大学资环学院,湖南 长沙 410128)
  • 出版日期:2009-11-25 发布日期:2012-04-20
  • 作者简介:向昌盛(1971-),男,湖南怀化人,湖南农业大学东方科技学院高级讲师,博士生,主要从人工智能、模式识别研究.
  • 基金资助:

    国家自然科学基金资助项目(30570351)

Support Vector Machines for the Chaotic Time Series Prediction

  1.  (1.Orient Science & Technology College of Hunan Agricultural University,Changsha 410128,China;2.College of Resources & Environment of Hunan Agricultural University,Changsha 410128,China)
  • Online:2009-11-25 Published:2012-04-20

摘要:支持向量机(SVM)是一种基于结构风险最小化原理的学习技术,是一种具有很好泛化性能的回归方法.针对混沌时间序列特点,提出混沌时间序列预测的支持向量机建模的思路、特点及关键参数的选取.对模型进行了实例研究,结果表明该模型能较好地处理混沌时间序列,具有较高的泛化能力和很好的预测精度.

关键词: 混沌时间序列, 相空间重构, 支持向量机, 均方误差

Abstract: Support vector machine is a learning technique based on the stuctural risk minimization principle,and it is a class of regression method with good generalization ability.Based on chaotic  time series characteristic,a prediction model of chaos time series is built by using the support vector machine.In this paper,the method,the characteristic,and the selecting of the key parameters are discussed about the model.A simulation example is taken to demonstrate correctness and effectiveness of the proposed method.The result shows that the model can better process a complex chaos time series data,and has better generalization and prediction accuracy.

Key words: chaotic time series, phase space reconstruction, support vector machine, mean square error

公众号 电子书橱 超星期刊 手机浏览 在线QQ