journal6 ›› 2013, Vol. 34 ›› Issue (5): 60-65.DOI: 10.3969/j.issn.1007-2985.2013.05.015

• 信息与通信 • 上一篇    下一篇



  1. (湖南师范大学物理与信息科学学院,湖南 长沙 410081)
  • 出版日期:2013-09-25 发布日期:2013-11-04
  • 作者简介:罗轶(1980-),男,广西陆川人,湖南师范大学物理与信息科学学院讲师,博士生,主要从事移动通信与交通信息处理研究.
  • 基金资助:


Analysis and Prediction on the Chaotic Property of Traffic Flow Time Series

 LUO  Yi   

  1. (College of Physics and Information Science,Hunan Normal University,Changsha 410081,China)
  • Online:2013-09-25 Published:2013-11-04


关键词: 嵌入维数, 延迟时间, 相空间重构, BP神经网络, RBF神经网络

Abstract: The real-teime and procise short-ferm traffic flow forecesting is the key factor for the realizing of traffic control and traffic guidance in the intelligent traffic system.Saturated correlation dimension method and mutual information method are used to calculate embedding dimension and delay time,and the traffic flow time series is reconstructed accordingly in phase space.Wolf method is used to calculate the largest Lyapunov exponent,and the power spectrum of traffic flow time series is analyzed.Results show that the traffic flow series is a chaotic sequence with noise.The prediction models based on BP neural networks and RBF neural networks are applied to pedict traffic flow time series,which shows that the two models both  have good prediction effects,with the former having higher prediction accuracy and quicker prediction speed.

Key words: embedding dimension, delay time, phase space reconstruction, BP neural networks, RBF neural networks

公众号 电子书橱 超星期刊 手机浏览 在线QQ