[1] SIMAKOV ANDREI,CHACON LUIS.Quantitative,Comprehensive,Analytical Model for Magnetic Reconnection in Hall-Magnetohydrodynamics[J].Physical Review Letters,2008,101(10):105003.DOI:10.1103/physrevlett.101.105003.
[2] POLYGIANNAKIS JOHN,MOUSSAS XENOPHON.A Review of Magneto-Vorticity Induction in Hall-MHD Plasmas[J].Plasma Physics and Controlled Fusion,2001,43(2):195-221.
[3] FORBES TERRY GERALD.Magnetic Reconnection in Solar Flares[J].Geophysical Astrophysical Fluid Dynamics,1991,62(1):15-36.
[4] HALL EDWIN HERBERT.On a New Action of the Magnet on Electric Currents[J].American Journal of Mathematics,1879,2(3):287-292.
[5] 周艳平,别群益,王其如,等.三维稳态MHD方程和Hall-MHD方程的Liouville型定理[J].中国科学:数学,2023,53(3):431-440.
[6] SCHULZ STEFAN.Liouville-Type Theorem for the Stationary Equations of Magneto-Hydro-Dynamics[J].Acta Mathematica Scientia,2019,39(2):491-497.
[7] CHAE DONGHO,WOLF JRG.On Liouville-Type Theorems for the Stationary MHD and Hall-MHD Systems[J].Journal of Differential Equations,2018,265(11):6271-6298.
[8] WU Jiahong.Global Regularity for a Class of Generalized Magnetohydrodynamic Equations[J].Journal of Mathematical Fluid Mechanics,2011,13(2):295-305.
[9] LEI Zhen,ZHOU Yong.Global Existence of Classical Solutions to 2D MHD System[J].Archive for Rational Mechanics and Analysis,2011,201(3):761-788.
[10] YU Xinwei,ZHAI Zhichun.Well-Posedness for Fractional Navier-Stokes Equations in the Largest Critical Spaces[J].Mathematical Methods in the Applied Sciences,2012,35(6):676-683.
[11] JARRN OSCAR.Regularity of Weak Solutions for the Stationary Ericksen-Leslie and MHD Systems[J].Journal of Mathematical Physics,2023,64(3):031510.DOI:10.1063/5.0133975.
[12] ZENG Zirong.Local Mild Solutions to Three-Dimensional MHD System in Morrey Spaces[J].Mathematical Methods in the Applied Sciences,2021,44(7):5326-5339.
[13] BIE Qunyi,WANG Qiru,YAO Zhengan.Global Well-Posedness of the 3D Incompressible MHD Equations with Variable Density[J].Nonlinear Analysis:Real World Applications,2019,47:85-105.
[14] ZHAI Zhichun.Well-Posedness for Fractional Navier-Stokes Equations in Critical Spaces Close to 〖AKB·〗-(2β-1)∞,∞(〖WTHZ〗Rn〖WTBZ〗)[J].Dynamics of Partial Differential Equations,2010,7(1):25-44.
[15] ZHANG Junyan.Local Well-Posedness of the Free-Boundary Problem in Compressible Resistive Magnetohydrodynamics[J].Calculus of Variations and Partial Differential Equations,2023,62(4):124.DOI:10.1007/s00526-023-02462-1.
[16] CHAE DONGHO,WAN Renhui,WU Jiahong.Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic Diffusion[J].Journal of Mathematical Fluid Mechanics,2015,17(4):627-638.
[17] DAI Mimi,LIU Han.On Well-Posedness of Generalized Hall-Magnetohydrodynamics[J].Zeitschrift für Angewandte Mathematik und Physik,2022,73(4):139.DOI:10.1007/s00033-022-01771-3.
[18] DAI Mimi.Local Well-Posedness of the Hall-MHD System in Hs(Rn) with s>n/2[J].Mathematische Nachrichten,2020,293(1):67-78.
[19] WAN Renhui,ZHOU Yong.Low Regularity Well-Posedness for the 3D Generalized Hall-MHD System[J].Acta Applicandae Mathematicae,2017,147(1):95-111.
[20] YE Zhuan.Well-Posedness Results for the 3D Incompressible Hall-MHD Equations[J].Journal of Differential Equations,2022,321:130-216.
[21] YUAN Baoquan,WANG Feifei.The Liouville Theorems for 3D Stationary Tropical Climate Model in Local Morrey Spaces[J].Applied Mathematics Letters,2023,138:108533.DOI:10.1016/ j.aml.2022.108533.
[22] LEMARI-RIEUSSET PIERRE GILLES.The Navier-Stokes Problem in the 21st Century[M].Boca Raton,London,New York:CRC Press,2016.
[23] KATO TOSIO.Strong Solutions of the Navier-Stokes Equation in Morrey Spaces[J].Boletim da Sociedade Brazilian Mathematical Society,1992,22(2):127-155.
[24] MIAO Changxing,YUAN Baoquan,ZHANG Bo.Well-Posedness of the Cauchy Problem for the Fractional Power Dissipative Equations[J].Nonlinear Analysis:Theory,Methods Applications,2008,68(3):461-484.
|