吉首大学学报(自然科学版)

• 信息与通信 • 上一篇    下一篇

基于改进粒子群优化的快速协作式频谱感知算法

刘耀峰,邓瑜,舒婷,雷可君   

  1.  (吉首大学信息科学与工程学院,湖南 吉首 416000)
  • 出版日期:2018-07-25 发布日期:2018-07-31

Fast Cooperative Spectrum Sensing Method Based on Improved Particle Swarm Optimization

LIU Yaofeng,DENG Yu,SHU  Ting,LEI  Kejun   

  1. (College of Information Science and Engineering,Jishou University,Jishou 416000,Hunan China)
  • Online:2018-07-25 Published:2018-07-31
  • About author:LIU Yaofeng (1985-),male,was born in Loudi City,Hunan Province,lecture of Jishou University,master;research area is signal detection.
  • Supported by:

    Hunan Provincial Department of Education (16A174);Science Foundation of Jishou University (15JD001,JD1805)

摘要:

为了改进算法的计算效率和感知性能,提出了一种新的线性协作式频谱感知算法.在新算法中,通过动态地改变粒子群优化(PSO)方法在每次迭代过程中的迭代系数,以获取最优的权重向量,从而最大化算法的检测概率.采用时变迭代系数后,基于PSO的协作式频谱感知算法在粒子飞行的初期具有很好的全局探索能力,而随着迭代次数的增加,算法具有很好的局部搜索能力.仿真结果表明,新算法相比基于传统PSO的频谱感知算法具有更快的收敛速度,相比传统的基于修正系数和基于传统PSO的协作式感知算法具有更好的性能.不同场景下的仿真结果验证了新算法的有效性.

关键词: 认知无线电, 协作式频谱感知, 粒子群优化, 能量检测, 修正系数

Abstract:

To improve the computation efficiency and the sensing performance,a new linear cooperative spectrum sensing algorithm is developed for cognitive radio.In the proposed method,the improved particle swarm optimization (PSO) is utilized to obtain the optimal weight vector to maximize the probability of detection by dynamically changing the inertia weight in each iteration.Due to using the of time varying inertia weight,the proposed PSO based cooperative spectrum sensing algorithm has good global exploration capability at the beginning of the swarm flight,and with the increase in the number of iterations,especially in the late swarm flight,has good local search capability.The simulation results illustrate that the proposed method has faster convergence speed than the method based on the traditional PSO.At the same time,it shows better detection performance than both the method based on modified deflection coefficient  and the method based  on traditional PSO.The simulation results under different sensing scenarios validate the effectiveness of the proposed cooperative sensing algorithm.

Key words: cognitive radio, cooperative spectrum sensing, particle swarm optimization, energy detection, modified deflection coefficient

公众号 电子书橱 超星期刊 手机浏览 在线QQ