[1] LI Likai, YU Yijun, YE Guojun, et al. Black Phosphorus Field-Effect Transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.
[2] LIU Han, NEAL ADAM T, ZHU Zhen, et al. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.
[3] CHURCHILL HUGH O H, JARILLO-HERRERO PABLO. Phosphorus Joins the Family[J]. Nature Nanotechnology, 2014, 9(5): 330-331.
[4] RODIN A S, CARVALHO A, CASTRO NETO A H. Strain-Induced Gap Modification in Black Phosphorus[J]. Physical Review Letters, 2014, 112(17): 176801.
[5] GUAN Jie, ZHU Zhen, TOMNEK DAVID. Phase Coexistence and Metal-Insulator Transition in Few-Layer Phosphorene: A Computational Study[J]. Physical Review Letters, 2014, 113(4): 046804.
[6] LING Xi, WANG Han, HUANG Shengxi, et al. The Renaissanceof Black Phosphorus[J]. Proceedings of the National Academy of Sciences, 2015, 112(15): 4523-4530.
[7] LAM KAI-TAK, DONG Zhipeng, GUO Jing. Performance Limits Projection of Black Phosphorous Field-Effect Transistors[J]. IEEE Electron Device Letters, 2014, 35(9): 963-965.
[8] BUSCEMA MICHELE, GROENENDIJK DIRKJ, BLANTERSOFYA I, et al. Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors[J]. Nano Letters, 2014, 14(6): 3347-3352.
[9] ENGEL MICCHAEL, STEINER MATHIAS, AVOURIS PHAEDON. Black Phosphorus Photodetector for Multispectral, High-Resolution Imaging[J]. Nano Letters, 2014, 14(11): 6414-6417.
[10] GIOVANNETTI GIANLUCA, KHOMYAKOV PETR A, BROCKS GEERT, et al. Substrate-Induced Band Gap in Graphene on Hexagonal Boron Nitride: Ab Initio Density Functional Calculations[J]. Physical Review B, 2007, 76(7): 073103.
[11] BEHERA SUSHANT KUMAR, DEB PRITAM. Controlling the Bandgap in Graphene/h-BN Heterostructures to Realize Electron Mobility forHigh Performing FETs[J]. RSC Advances, 2017, 7(50): 31393-31400.
[12] ROY TANIA, TOSUN MAHMUT, CAO Xi, et al. Dual-Gated MoS2/WSe2 van der Waals Tunnel Diodes and Transistors[J]. ACS Nano, 2015, 9(2): 2071-2079.
[13] AMIN B, SINGH N, SCHWINGENSCHLGL U. Heterostructures of Transition Metal Dichalcogenides[J]. Physical Review B, 2015, 92(7): 075439.
[14] KAUR SUMANDEEP, KUMAR ASHOK, SRIVASTAVA SUNITA, et al. Van der Waals Heterostructures Based on Allotropes of Phosphorene and MoSe2[J]. Physical Chemistry Chemical Physics, 2017, 19(33): 22023-22032.
[15] DENG Yexin, LUO Zhe, CONRAD NATHAN J, et al. Black Phosphorus-Monolayer MoS2 van der Waals Heterojunction p-n Diode[J]. American Chemical Society, 2014, 8(8): 8292-8299.
[16] PADILHA J E, FAZZIO A, DASILVAANTNIO J R. van der Waals Heterostructure of Phosphorene and Graphene: Tuning the Schottky Barrier and Doping by Electrostatic Gating[J]. Physical Review Letters, 2015, 114(6): 066803.
[17] AHMET AVSAR, IVAN J VERA-MARUN, TAN Junyou, et al. Air-Stable Transport in Graphene-Contacted, Fully Encapsulated Ultrathin Black Phosphorus-Based Field-Effect Transistors[J]. ACS Nano, 2015, 9(4): 4138-4145.
[18] BUSCEMA MICHELE, GROENENDIJK DIRK J, STEELE GARY A, et al. Photovoltaic Effect in Few-Layer Black Phosphorus PN Junctions Defined by Local Electrostatic Gating[J]. Nature Communications, 2014, 5(1):1-6.
[19] FU Xi, GUO Jiyuan, LI Liming, et al. Structural and Electronic Properties of Predicting Two-Dimensional BC2P and BC3P3 Monolayers by the Global Optimization Method[J]. Chemical Physics Letters, 2019, 726: 69-76.
[20] POROD W, FERRY D K. Modification of the Virtual-Crystal Approximation for Ternary III-V Compounds[J]. Physical Review B, 1983, 27(4): 2587-2589.
[21] RAMER NICHOLAS J, RAPPE ANDREW M. Virtual-Crystal Approximation That Works: Locating a Compositional Phase Boundary in Pb(Zr1−xTix)O3[J]. Physical Review B, 2000, 62(2): R743-R746.
[22] LEE SEONG JEA, KWON TAE SONG, NAHM KYUN, et al. Band Structure of Ternary Compound Semiconductors Beyond the Virtual Crystal Approximation[J]. Journal of Physics: Condensed Matter, 1990, 2(14): 3253-3527.
[23] TAYLOR JEREMY, GUO Hong, WANG Jian. Ab Initio Modeling of Quantum Transport Properties of Molecular Electronic Devices[J]. Physical Review B, 2001, 63(24): 245407.
[24] KE Youqi, XIA Ke, GUO Hong. Disorder Scattering in Magnetic Tunnel Junctions: Theory of Nonequilibrium Vertex Correction[J]. Physical Review Letters, 2008, 100(16): 166805.
|