[1] BOT RADU IOAN, GRAD SORIN MIHAI, WANKA GERT. Generalized Moreau-Rockafellar Results for Composed Convex Functions[J]. Optimization, 2009, 58(7): 917-933.
[2] BOT RADU IOAN, GRAD SORIN MIHAI, WANKA GERT. A New Constraint Qualification for the Formula of the Subdifferential of Composed Convex Functions in Dimensional Space[J]. Mathematische Nachrichten, 2010, 281(8): 1088-1107.
[3] FANG Donghui, ANSARI Q H, ZHAO Xiaopeng. Constraint Qualifications and Zero Duality Gap Properties in Conical Programming Involving Composite Functions[J]. Journal of Nonlinear and Convex Analysis, 2018, 19(1): 53-69.
[4] FANG Donghui, ZHANG Yong. Extended Farkas's Lemmas and Strong Dualities for Conic Programming Involving Composite Functions[J]. Journal of Optimization Theory and Applications, 2018, 176(2): 351-376.
[5] FANG Donghui, WANG Xianyun. Stable and Total Fenchel Duality for Composed Convex Optimization Problems [J]. Acta Mathematicae Applicatae Sinica: English Series, 2018, 34(4): 813-827.
[6] LI Gang, ZHOU Yuying. The Stable Farkas Lemma for Composite Convex Functions in Infinite Dimensional Spaces [J]. Acta Mathematicae Applicatae Sinica: English Series, 2015, 31(3): 677-692.
[7] LONG Xianjun, HUANG Nanjing, REGAN DONAL. Farkas-Type Results for General Composed Convex Optimization Problems with Inequality Constraints[J]. Mathematical Inequalities and Applications, 2010, 13(1): 135-143.
[8] FANG Donghui, GONG Xing. Extended Farkas Lemma and Strong Duality for Composite Optimization Problems with DC Functions[J]. Optimization, 2017, 66(2): 179-196.
[9] BONCEA HORATIU VASILE, GRAD SORIN MIHAI. Characterizations of ε-Duality Gap Statements for Composed Optimization Problems[J]. Nonlinear Analysis: Theory, Methods & Applications, 2013, 92(2013): 96-107.
[10] BONCEA HORATIU VASILE, GRAD SORIN MIHAI. Characterizations of ε-Duality Gap Statements for Constrained Optimization Problems[J]. Central European Journal of Mathematics, 2013, 11(11): 2020-2033.
[11] BOT RADU IOAN, GRAD SORIN MIHAI, WANKA GERT. On Strong and Total Lagrange Duality for Convex Optimization Problems[J]. Journal of Mathematical Analysis & Applications, 2008, 337(2): 1315-1325.
[12] SON T Q, STRODIOT J J, NGUYEN V H. ε-Optimality and ε-Lagrangian Duality for a Nonconvex Programming Problem with an Infinite Number of Constraints[J]. Journal of Optimization Theory and Applications, 2009, 141(2): 389-409.
[13] JEYAKUMAR V, LI G Y. New Dual Constraint Qualifications Characterizing Zero Duality Gaps of Convex Programs and Semidefinite Programs[J]. Nonlinear Analysis: Theory Methods & Applications, 2009, 71(12): e2239-e2249.
[14] JEYAKUMAR V, LI G Y. Stable Zero Duality Gaps in Convex Programming: Complete Dual Characterizations with Applications to Semidefinite Programs[J]. Journal of Mathematical Analysis and Applications, 2009, 360(1): 156-167.
[15] ZALINESCU C. Convex Analysis in General Vector Spaces[M]. New Jersey: World Scientific, 2002: 75-135. |