journal6 ›› 2014, Vol. 35 ›› Issue (6): 64-69.DOI: 10.3969/j.issn.1007-2985.2014.06.016

• 信息 • 上一篇    下一篇

基于Elman神经网络的PMV参数预测建模

江沸菠,申艳妮,甘巧   

  1. (湖南师范大学物理与信息科学学院,湖南 长沙 410081)
  • 出版日期:2014-11-25 发布日期:2014-11-27
  • 作者简介:江沸菠(1982—),男,湖南株洲人,湖南师范大学物理与信息科学学院讲师,博士,主要从事人工智能、非线性系统建模等研究.
  • 基金资助:

    湖南省教育厅科学研究项目(12C0241);湖南省大学生研究性学习和创新性实验计划项目(湘教通[2013]191号74);湖南师范大学教学改革研究项目(121-0683);湖南师范大学双语教学课程建设项目(043-024)

PMV Parameter Prediction and Modeling Based on Elman Neural Network

 JIANG  Fei-Bo, SHEN  Yan-Ni, GAN  Qiao   

  1. (College of Physics and Information Science,Hunan Normal University,Changsha 410081,China)
  • Online:2014-11-25 Published:2014-11-27

摘要:传统PMV指标计算方法具有复杂度高、延时大的缺陷.根据PMV参数的时变特征,利用Elman神经网络建立PMV参数预测模型,实现对热舒适度的在线监测.模型以温度、相对湿度、风速和平均辐射温度为输入,以PMV指标为预测输出,具有良好的泛化能力.仿真结果表明该方法的预测结果与数值计算的结果相近,同时训练后神经网络的计算时间优于传统方法的计算时间.

关键词: PMV, 热舒适度, Elman神经网络, 预测模型

Abstract: The traditional numerical calculation method of PMV has the defects of high computational complexity and large time delay.In this paper,according to the time-varying characteristic of PMV index,PMV prediction model is established based on Elman neural network and the on-line monitoring of thermal comfort is realized.The temperature,air velocity,relative humidity and mean radiant temperature are selected as the inputs of the prediction model and the PMV value is assigned as output.The prediction model has good generalization capacity.Simulation results show that the predictive results of the proposed method are in agreement with the results of numerical calculation;meanwhile the computation time of the proposed method is superior to that of the traditional method after the Elman neural network is trained sufficiently.

Key words: predicted mean vote, thermal comfort level, Elman neural network, prediction model

公众号 电子书橱 超星期刊 手机浏览 在线QQ