A Jacobi Symbol Concerning the Exponential Diophantine Equation ax+by=cz
( 1. Department of Mathematics, Zhanjiang Normal College, Zhanjiang 524037, Guangdong China;2. Department of Mathematics, Shanghai Teachers s University, Shanghai 200234, China)
Online:2004-03-15
Published:2012-11-06
About author:LE Mao-hua( 1952- ) , male, was born in Shanghai, the professor of the department of Mathematics, Zhanjiang Normal Collage, research area is number theory.
Supported by:
Supported by the National Natural Science Foundation of China ( No. 10271104) , the Guangdong Provincial Natural Science Foundation( No. 011781) and the Natural Science Foundation of Education Department of Guangdong Province ( No.0161)
摘要:设r 是大于1 的奇数, u, v 是适合2 | u, gcd( u , v ) = 1, u > 2r v/ ?? 的正整数. 又设a, b , c 是适合a+ b - 1 = ( u+ v - 1) r 以及c = u2 + v 2的正整数. 确定了Jacobi 符号的值. 这一结果有助于指数Diophantine 方程ax+by=cz的求解.
[ 1] MAHLER K. Zur Approximation Algebraischer Zahlen I: ??berden Qr??ssfen Primtailer Bin??rer Formen [ J] . Math. Ann. , 1933, ( 107) :691- 730.
[ 2] GEL??FOND A O. Sur la Divisibilit?? de la Diff??rence Des Puissances de Deux Nombres Entiers Par Une Puissance d??un id??al Premier[ J] . Mat. Sb. , 1940, ( 7) : 7- 25.
[ 3] TERAI N.The Diophantine Equation ax + by = cz [ J] . Proc. Japan Acad. Ser. A Math. Sci. , 1994, 70: 22- 26.
[ 4] CAO Z- F. A Note on the Diophantine Equation ax + by = cz [ J] . Acta Arith, 1999, 91: 85- 93.
[ 5] LEMao- hua. On the Diophantine Equation ax + by = cz [ J] . Journal of Changchun Teachers College( Naturnal Sciences Edition) ,1985, 2( 1) : 50- 62.
[ 6] LE Mao- hua. A Note on the Diophantine Equation ( m3 - 3m) x + ( 3m2 - 1) y = ( m2 + 1) z [ J] . Proc. Japan Acad Ser . A Math.Sci. , 1997, 73: 148- 149.