journal6 ›› 2000, Vol. 21 ›› Issue (2): 71-73.

• 科研简报 • 上一篇    下一篇

直观模糊性特别拓扑空间中的S- 可数性及S- Lindelof空间

  

  1. (吉首大学数学与计算机科学系,吉首 416000)
  • 出版日期:2000-06-15 发布日期:2013-01-16
  • 作者简介:杨新梅( 1963~ ) ,男, 湖南长沙人,吉首大学数学与计算机科学系讲师,主要从事基础数学研究.

S- Countability and S- Lindelof Space in Intuitionistic Fuzzy Special Topological Space

  1. ( Department of Mathematics and Computer Science , Jishou university, 416000, Hunan China)
  • Online:2000-06-15 Published:2013-01-16

摘要:在直观模糊特别拓扑空间中引入 S- 可数性及S- Lindelof空间的概念,一个直观模糊特别半开集族{Aa | a∈I } 是( x , τ) 的 S- 基, 当且仅当每一个直观模糊特别集均为集族{ Aa | a∈I } 的元的并; 每一满足S- 第二可数性的直观模型特别拓扑空间也满足S- 第一可数性公理;满足S- 第二可数性公理的直观模糊特别拓扑空间是S- Lindelof 空间; S紧空间是 S- Lindelof 空间.

关键词: 直观模糊特别集, 直观模糊特别拓扑空间, S-可数性, S-Lindelof 空间

Abstract: In this paper,The concepts of S- Base S- Countablility and S-Lindelof space in intuitionistic fuzzy special topological spaces are introducted. Some properties are given:A family { Aa, a ∈ I } of IFFSOS is a S- base of (X , τ) if and only if amy IFFSOS is the suprema of a collection of { Aa, a∈ I } , If an IFSTS satisfies second a xiom of count-ablility, it satisfies first axiom of countability. An IFSTS satisfied second axiom of countaility is a S- Lindelof space, A S- Comparct space is a S- Lindelof space.

Key words: intuitionistic fuzzy special set, intuitionistic fuzzy special topdogical space, S- Countabili ty, S- Lindelof Space.

公众号 电子书橱 超星期刊 手机浏览 在线QQ